A HYBRID JUMP SEARCH AND TABU SEARCH
METAHEURISTIC FOR THE UNMANNED AERIAL
VEHICLE (UAV) ROUTING PROBLEM
THESIS
Gary W. Kinney Jr., Captain, USAF

AFIT/GOA/ENS/00M-5

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTIC QUALITY INSPROTRDE

20000613 071

|
|
|

Form Approved
REPORT DOCUMENTATION PAGE OMB N 0740188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
blank) March 2000 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A HYBRID JUMP SEARCH AND TABU SEARCH METAHEURISTIC FOR
THE UNMANNED AERIAL VEHICLE (UAV) ROUTING PROBLEM

6. AUTHOR(S)

Gary W. Kinney Jr., Captain, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN) AFIT/GOA/ENS/00M-05
2950 P Street, Building 640
WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Mark O’Hair, Lt Col, USAF AGENCY REPORT NUMBER
UAV Battlelab mark.ohair@eglin.af. mil

1003 Nomad Way, Suite 107 Comm: (850) 882-5940 x208
Eglin AFB, FL 32542-6867 DSN: 872-5940 x208

11. SUPPLEMENTARY NOTES

Advisor: Maj Raymond R. Hill, ENS, DSN: 785-3636, ext. 4327

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

ABSTRACT (Maximum 200 Words)

In this research, we provide a new meta-heuristic, a jump search / tabu search hybrid, for addressing the vehicle routing problem with real-life constraints. A tour
construction heuristic creates candidate solutions or jump points for the problem. A tabu search algorithm uses these jump points as starting points for a guided local
search. We provide statistical analysis on the performance of our algorithm and compare it to other published algorithms. Our algorithm provides solutions within
10% of the best known solutions to benchmark problems and does so in a fraction of the time required by competing algorithms. The timeliness of the solution is
vitally import to the unmanned aerial vehicle (UAV) routing problem. UAVs provide the lion’s share of reconnaissance support for the US military. This
reconnaissance mission requires the UAVs to visit hundreds of target areas in a rapidly changing combat environment. Air vehicle operators (AVOs) must prepare a
viable mission plan for the UAVs while contending with such real-life constraints as time windows, target priorities, multiple depots, heterogeneous vehicle fleet, and
pop-up threats. Our algorithm provides the AVOs with the tools to perform their mission quickly and efficiently.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Air Force Research, Operations Research, Optimization, Combinatorial Analysis, Algorithms, 69

Remotely Piloted Vehicles, Surveillance Drones, Multiple Depots, Time Windows (Jump Search, Tabu Search, Vehicle 16. PRICE CODE
Routing Problem, Java, Heuristics, Traveling Salesman Problem).

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the United States Air Force,
Department of Defense, or the US Government.

AFIT/GOA/ENS/00M-5

A HYBRID JUMP SEARCH AND TABU SEARCH
METAHEURISTIC FOR THE UNMANNED AERIAL

VEHICLE (UAV) ROUTING PROBLEM

THESIS

Presented to the Faculty of the Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Operational Analysis

Gary W. Kinney Jr.,
Captain, USAF

March 2000

Approved for public release; distribution unlimited

AFIT/GOA/ENS/00M-5

A HYBRID JUMP SEARCH AND TABU SEARCH
METAHEURISTIC FOR THE UNMANNED AERIAL

VEHICLE (UAV) ROUTING PROBLEM

Gary W. Kinney Jr.,

Captain, USAF
Approved:
WWX | Maq 00
M4j Raymond R. Hill (Chairman) date

Dr James T. Moore (Member) ~ date

ii

Acknowledgements

I would like to take the time to thank several people who helped me to complete
this work. Thanks to Lt Col (ret) Glenn Bailey, my initial thesis advisor before going off
to greener pastures, for choosing me for the mission. Thanks to Lt Col Mark O’Hair, my
thesis sponsor, for providing customer focus, the necessary information, and the funds to
go get it. Thanks to Dr. James Moore, my responsive reader, for undertaking the grueling
task of reading and editing this work. Thanks to Capt Kevin O’Rourke for laying down
the groundwork.

I would like to give special thanks to Maj Ray Hill, my thesis advisor, for
providing direction while allowing me to choose my own way, and for his advice and
assistance in all aspects of this undertaking. I would also like to give special thanks to Lt
Robert Harder, the Java guru and my wingman, whose help was crucial to the completion
of this effort and for coming along for the ride.

Finally, I would like to thank my friends and classmates for listening to me babble
on about this project when they had projects of their own to contend with and for
~ providing a much-appreciated distraction when I needed it. Most of all, I would like to
thank my family for providing the support I needed over the last year and the 32 years

before.

Gary W. Kinney Jr.

1ii

Table of Contents

Chapter 1. Background and Statement of the Problem 1
1.1 BACKEIOUNG ...ttt et ro oo e sebsb e m s s s s s st st e sasasnantas 1
1.2 Problem StAtEIMENL.......ccvvvreereruirererererieiesctresesesetetsseetesesnssesesaresseesssststtsssrsressssssstsbsssresserssnrosensessasvass 2
1.3 Scope and CONtIADULIONccmiimiiiiiiiciiri ettt rer s s e s s sseeba s b s s 3
1.4 REPOTE OVETVIEW.....ucneeeerrrerercnremetniiieissess st s bebesassss erasbsnssassns erreesae e nsenesannerene 4

Chapter 2. Literature Review 5
2.1 Vehicle Routing and Traveling Salesman Problems..........ccovmeeimecciirceenncineenn 5
2.2 HeuristiC APPIOACHES......c.ccvvviirriiiiiiietriittiini it assssss s s esnsassnsrssas b s nesesben 9

2.2.1 Tour Construction and Tour Improvement AIZOTIthINSccceueiecireieecniniiiieiiiesteeseaeanen 9
2.2.2 Solomon’s InSertion HEUTISHCc.c..coirieririieniiiicintitntet sttt ssesne e ssss s esesesenes 11
2.2.3 k-opt Improvement AIZOTIthINS........ccccovvimiiriiiiinieneieeeiie e sssssssens 13
2.2.4 TADU SEATCK. ..ottt et bbbt bbb bbb e bene 13
2.2.5 JUMP SEAICH ... 15
2.3 Earlier UAV RoOUtING EffOrtS ...c.ccoviriimiriiiriecirricrenie e sestereesante et e st ssesse s s s e ses e snanns 16
2.4 ANalySis Of HEUTISHCS ...c.orvemeuierenceinererieeecree ettt et e s e e es s s e s sn e e e e sas st st se e ses 17
2.5 CONCIUSION ...ttt bbb as s e e st e e s ot s s st sas e sosesessbsntensssnnanenes 18

Chapter 3. Methodology 20
3.1 Solution REPIESENIALION.......oucevrieeirierreeiiceriretectentneereeteee st senereteseasaresesesasacasestsnsasenersenesssoseserasans 20
3.2 Tour Construction HEUTISHICcveucveimiiiriiiiirccnnie et ettesees e st essesesasassesesesseans 21

3.2.1 Parameter SELNES......cevereererririeerrerestiererieerestnesestsssestess et essessesssssssessensassessestansessessressssnesssssesens 22
3.2.2 Tour INitialiZatioN.......occviviiiriiiiciciiiiciiisine ettt ne e ee et s e ts e sas s s s se e ssnnn 22
3.2.3 CUStOMET INSETLIONcuciiinteeirieietcteie ettt esesse st ettt ses e st s e e e s s sesansna e nan e s 23
3.2.4 Completed SOIULIONScovivieririricnirtenteretere et see e sereseestesse e sesstssaseresssessessnesanessssasesnsesssennnensees 23
3.3 Local Search HEUTISHICScovvuiirircrireririerenieeer et et scseseeinessesesesesssassosesssassssssensssesessssssssessnsesassenans 24
3.3.1 First Best Local SEarChc.oovimiiieeiriiccecrcrctte st esesste e et sas e e asse e ne 24
3.3.2 Global Best LoCal SEAICh.........ccoccceiereriiiirreeieretiretesert sttt sr e sssresses e snssnesees 27
3.3.3 Global Best Tabu Search...........ccoveecoieeereercnrnrrieeeecteeeeerereseseetsseesestesesnsnssssssesessessnsens 29
3.3.4 Reactive Tabu S€arch.......c.covoivieiriceeininresercrieeeict et esessssssessnsseseens s s snenanes 31
3.4 The Jump Search AIZOTItRINc.coiiuiriiiiiirieeictrt ettt sae e st se st sesaessessseesnenesions 32
3.5 CONCIUSION c..ceveieiiciereeetecrteertst ettt e et eae st e s st sses e sasstesasa st st esesaessasassstesnsessnsessaressssensessssressensarens 33

Chapter 4. Results 34
4.1 Description of SOI0mMON INSLANCEScccecrueureeriririecerisierese et enscene e ess et se e s nesese e e s s essasens 34
4.2 Tour Construction PArameterscccceevieuvrivrrirereeieeeeresicetries s s sssessssssssssesessesesessssssessssnssens 35
4.3 Tabu List LEenGthu..c.ocoiiiiiiiiiiiicetecet ettt cstee ettt b e s s et se s ren s et b e e nesaans 37
4.4 TUMP POINIS....cvtviiniiiiistitic ettt sttt ss e s s e a s b enssasens 38
4.5 HEUTISHC ANALYSIS...couiiriiieieeieieieteesieenieteeteseete st esessetessaessssrssessssonssssssesesessonsarsassssaneneseensesensesasesas 41
4.6 Comparison to O’Rourke’s Reactive Tabu Search Algorithm........cccccecveveeeeervncinecerneeeereecenn 43
4.7 Comparison to Best Known Solutions for Solomon’s MVRPTW InStances..........co.eoveeveeeeerereecenns 48
4.8 Multiple DepOt PIODIEIIS.........cooviiririiciciriiecesere e s s tevevesevesess s b resessas s s esesas s ssasssssasasaa 50
4.9 CONCIUSIONS.cotvmniiitteticceceeaeieseie ettt e aesssss et s st st st esse s sas s a e besasasssasseseaesssessnsnensssneseneasnens 52

iv

Chapter 5. Recommendations for Further Research 53

5.1 Modeling UAYV RealiSIccuerecniiiriiriiiiiiiisce sttt e ae e bbbt 53
5.2 TOUT CONSIIUCLON 1.veveevrererertereeieeraeeresestrieertsetsresteresesstsnesseressesteressosssssseshssssssssasessasesesnsssssassoresnssnseans 53
5.3 Search TEChIMIGUESc.c.cceuemcmccmrnieeieeresi et e e s s bbb s s snesene s b 54
5.4 EXtENSIONS 10 VRP ...ttt et et sesessen st se e e sesarsbe s e see e s eose e saessestobene 54
Bibliography 55

List of Tables

Table 1 — Parameter Value Goodness-0f-fit TeSt.......ccevveveverereverrieeireeeeeeeeseeeeeeererenenans 36
Table 2 — Tabu Length Testc.ccocoiviirreieeieeeceeereeee e ee e 37
Table 3 ~ Average Best Jump Point INAEXc.cvevevrveieeeiinieieeeeeeeee e eeeeee oo 38
Table 4 — Jump Point Thresholds for JFB........c..cocuveeviuiieiininieeeeeeee oo se e 39
Table 5 — Jump Point Thresholds for JGB..........cocueecuecuiuiceeieeneceeeeeeesesseseeses s 39
Table 6 — Jump Point Thresholds for JTScccoueiiueveieinieeeeeecee e 40
Table 7 — Threshold / Iteration Combinations for JTSceceoeeeveeeeeereseereeeeseeno, 40
Table 8 — Minimum Distances Found by All Algorithms.ceovuvvevereeeeereeereeoenns 42
Table 9 — Average Solve Times for All AIgOTthmscceeeeeeeveeeeeeeeereeeeoea 43
Table 10 — Comparison on Solomon 25 Customer Problems............oovevveveveeeeevereenns 45
Table 11 — Comparison on Solomon 50 Customer Problems...........ocooeveereremrvrernn, 46
Table 12 — Comparison on Solomon 100 Customer Problemsoo.oveveveoeeoeveoonon 47
Table 13 —~ Comparison to Best Known Solutions for Solomon Instances...................... 49
Table 14 — Comparison on Cordeau ez al MD VRPS.........coovoveeeeeereeeeeeeoeeoeooeeoeoeooos 50
Table 15 — Comparison on MD VRPs from Literature...............oceeeveveeverrereveooeoonn. 51

vi

AFIT/GOA/ENS/00M-5
Abstract

In this research, we provide a new meta-heuristic, a jump. search / tabu search
hybrid, for addressing the vehicle routing problem with real-life constraints. A tour
construction heuristic creates candidate solutions or jump points for the problem. A tabu
search algorithm uses these jump points as starting points for a guided local search. We
provide statistical analysis on the performance of our algorithm and compare it to other
published algorithms. Our algorithm provides solutions within 10% of the best known
solutions to benchmark problems and does so in a fraction of the time required by
competing algorithms. The timeliness of the solution is vitally import to the unmanned
aerial vehicle (UAV) routing problem. UAVs provide the lion’s share of reconnaissance
support for the US military. This reconnaissance mission requires the UAVs to visit
hundreds of target areas in a rapidly changing combat environment. Air vehicle operators
(AVOs) must prepare a viable mission plan for the UAVs while contending with such
real-life constraints as time windows, target priorities, multiple depots, heterogeneous
vehicle fleet, and pop-up threats. Our algorithm provides the AVOs with the tools to

perform their mission quickly and efficiently.

Keywords: Air Force Research, Operations Research, Combinatorial Analysis,
Algorithms, Remotely Piloted Vehicles, Surveillance Drones, Multiple Depots, Time
Windows, Jump Search, Tabu Search, Vehicle Routing Problem, Java, Heuristics,

Traveling Salesman Problem.

Vil

A HYBRID JUMP SEARCH AND TABU SEARCH
METAHEURISTIC FOR THE UNMANNED AERIAL

VEHICLE (UAV) ROUTING PROBLEM

Chapter 1. Background and Statement of the Problem

1.1 Background

Unmanned aerial vehicles (UAVs) play an increasingly important role in military
operations. In recognition of this fact, the Air Force established the UAV Battlelab at
Eglin AFB, FL in 1997. The UAV Battlelab’s mission is to “rapidly identify and
demonstrate the military worth of innovative concepts that exploit the unique
characteristics of UAVs to advance Air Force combat capability” (USAF Unmanned
Aerial Vehicle Battlelab homepage, 1999).

The bulk of the UAV mission is reconnaissance. A reconnaissance mission
involves the UAV flying over a number of target areas within established time windows
and/or outside of restricted time windows, collecting images for a minimum (though
potentially longer) amount of time, and returning to base. The air vehicle operators
(AVOs) are responsible for creating a viable flight plan for each reconnaissance mission,

for each UAYV under their control.

1.2 Problem Statement

The AVOs must determine the routing for multiple UAVs to cover designated
target areas while conforming to established time window restrictions and remaining
within UAV endurance limits. The routings must account for the wind and weather
conditions at various altitudes, no-fly zones, high threat areas, and target priorities if
complete target coverage is impossible. Currently, AVOs determine these routing
manually.

In a rapidly changing combat environment, ne\.zv targets often arise. It is common
for UAV missions to receive a new target tasking during a mission, a dynamic re-tasking.
It is also common for there to be several re-taskings during the course of a UAV mission.
AVOs currently re-route the UAV manually to accommodate the re-tasking and try to
complete as much of the original plan as possible. AVOs need a way to quickly add new
targets to the route while minimizing the coverage impact on any targets not already
visited.

Mathematically, the problem is to minimize the ‘cost’ of coverage, (e.g. flight
time, man-hours, etc.) if target coverage is feasible or, alternatively to maximize coverage
with the available resources. We know the targets and their time window restrictions and
priorities, the number of vehicles available, current weather data, and threat areas. We
solve the problem by assigning tours to the available vehicles. Each tour consists of an
ordered list of targets. We are constrained by the time windows for the target areas, the
threat areas we must circumnavigate, and the endurance of the vehicles. Formally, this

problem is a multiple travelling salesman problem (TSP) with side constraints.

1.3 Scope and Contribution

This research continues the efforts of O’Rourke (1999) in support of the UAV
Battlelab. O’Rourke’s algorithm provides the AVOs with near-optimal tours accounting
for time windows, threat areas, multiple vehicles, and asymmetric route lengths due to
wind. Our algorithm extends O’Rourke’s effort in four areas. The first area adds a
priority scheme to the target areas to accommodate resource-constrained environments.
The second area adds the ability to handle heterogeneous vehicle types from multiple
starting locations, or depots. The third area adds the ability to route vehicles so as to
avoid restricted time windows or time walls. The final area provides a quicker solution
using a jump search / tabu search (JTS) hybrid algorithm.

We do not perform any target preprocessing. Operationally, the AVO receives a
target list and often the UAV can capture more than one target in a single snapshot.
Mathematically, this represents a coverage problem; however, for our purposes we
assume coverage is accounted for in the target area list provided to our algorithm.

We also do not account for vehicle turning radius or approach angles. Although
this can be an important aspect of vehicle routing, such capabilities vary based on vehicle
type. Since our algorithm handles multiple vehicle types, we assume AVOs handle the
flight profile execution detail.

Finally, we do not account for changes in terrain. Although terrain may affect
route feasibility, certain assumptions must be made in order to return an answer in a
reasonable amount of time. We will consider terrain as flight profile execution and agéin

leave that to the AVOs.

Our contribution lies in assisting the AVOs in two important ways. First, the
jump search portion of our algorithm provides the AVOs with a very quick, feasible,
high-quality solution. This is an important capability for dynamically routing an airborne
UAYV. Time permitting, the AVOs can further refine a quickly obtained solution by
engaging the tabu search portion of the algorithm. Second, we provide enhancements to
known heuristic approaches to address customer prioritization, time walls, multiple
depots, and non-homogeneous vehicles.

In terms of operations research, this effort provides a new meta-heuristic
approach, a JTS hybrid algorithm, for solving complex vehicle routing problems. This
algorithm is based on the hypothesis that the speed of tabu search is improved with a
quality starting solution and that multiple starting solutions are an effective
diversification technique for the search. We prove both of these hypotheses through

empirical testing.

1.4 Report Overview

Chapter 2 presents a brief review of the literature pertaining to this research, while
Chapter 3 presents a proposed methodology for conducting the research. Chapter 4
presents our test of the algorithm and analysis of the test results. Chapter 5 provides

avenues for further research.

Chapter 2. Literature Review

2.1 Vehicle Routing and Traveling Salesman Problems

The vehicle routing problem (VRP) and the traveling salesperson (agent) problem
(TSP) afe two classic problems of operations research. The literature contains many
examples of different varieties of these problems, some of which we describe below.
Lawler et al (1985) provides comprehensive coverage of the TSP and its variants.

The two problems are closely related. In the TSP, a ‘salesman’ must visit a list of
cities and return home, visiting each city only once. The objective is to find the
minimum tour length. A tour or route consists of an ordered list of cities visited. By its
classical definition, a sub-tour is an ordered cycle of one or more cities that does not
include all of the cities. The presence of sub-tours in the solution of a TSP makes the
solution infeasible.

For our purposes, we may not have the resources to visit all the cities. Therefore,
we define a sub-tour as an ordered cycle of two of more cities that doés not include the
starting city or depot. The VRP is an extension of the TSP, in which the vehicle either
delivers or picks up items from the cities subject to volume and weight capacity
constraints.

Carlton (1995) creates a hierarchical classification scheme for the General VRP
(GVRP). His classification establishes tiers for the basic TSP, VRP, and pickup and
delivery problems (PDP). In a VRP, the vehicles perform either delivery or pickup
operations exclusively. A PDP extends the VRP to where vehicles can make one or more

pickups from customers along the route for delivery to other customers along the route.
5

Each tier allows for any combination of special cases of each of the problems.
The problem can have a single vehicle (SV), multiple homogeneous vehicles (MVH), or
multiple non-homogeneous vehicles (MVH). The vehicles can depart from a single depot
(SD), or multiple depots (MD), and the tour can be constrained by time windows (TW)
and roufe length (RL) (Carlton 1995). Using Carlton’s classifications, our problem is a
MD MVH TSP with TW and RL. The route length constraint represents the endurance of
the vehicle. In addition, we must contend with added constraints accommodating
customer priorities and restricted time windows.

We base our mathematical formulation of the problem on Carlton’s formulation
for the MD MVH PDP with TW and RL and Ryan’s formulation for the MVH SD TSP
with TW and RL (Carlton 1995, Ryan et al 1999). We have k=1...V vehicles located at
r=1...D depots which must service N customers indexed by i and j.

Each customer has a service time s;, a time window defined by earliest arrival e;
and latest departure /;, and a restricted time window defined by earliest restricted time er;
and latest restricted time Ir;. Vehicles arriving early may wait with waiting time W; at
customer i, equal to the earliest arrival time e; minus the actual arrival time. Vehicles
arriving during the restricted time must also wait with waiting time W; at customer i,
equal to the latest restricted time Ir; minus the actual arrival time. Vehicles arriving
before the earliest restricted time er; must be able to complete service before the earliest
restricted time er; or must also wait with waiting time W; at customer i, equal to the latest
restricted time Ir; minus the actual arrival time. If a customer is not visited, it has an

associated penalty p; based on its priority.

Each segment between customers i and j has an associated cost ¢, time required
to travel the segment #;,, and segment penalty spj- for time spent in high threat areas and
no fly zones; all of these values differ based on vehicle type. Each vehicle begins and
ends its tour at its depot, customer index 0, and has an endurance (maximum route
length) uy,.

We assign a value of 1 to X, if vehicle k from depot r travels from customer i to
customer j. We assign the starting service time for customer i to 7;. We assign a value 6f

1 to n; if customer i is not visited. The objective is to minimize

Z=ZZZZ(CW+SP,~,-kr)'er+2VV,~+Zp,- gt M

reD keV ieN jeN ieN ieN

Subject to tour constraints,

YY¥ X, =1 VjeN (2a)

reD keV ieN
i#f

[one vehicle enters each customer]
Y X -2 X, =0 VjeNkeV,reD (2b)

ieN ieN
[same vehicle that enters each customer leaves it]

time window constraints,

X =12T; =T, +s,+1, +W, Vi je NVkeV,VreD (3a)

[time precedence]

ijkr ifkr

e.<T and T, +s,<I. Vie N (3b)
[time windows]

Irr<T. orT,+s,<er, VieN Bc)
[restricted time windows]

route length constraints,

3 (0 +W, +s,) X, Su,, VkeV,reD @

ieN jeN

7

visitation constraints,

n=1->%>X, VieN)

reD keV ;eN
J#i
and binary constraints.
X, {01} Vi je NVkeV,VreD (6)
nefol} VieN (6b)

Finally, we need sub-tour breaking constraints. Let N represent the subset of
available customers visited by vehicle k from depot r. For each vehicle, we add the

following constraints

22 X, 21 V nonempty subset Q < N¥.)]
i€ jeQ

In Chapter 3, we show our solution structure implicitly enforces these constraints as well
as the standard tour (2) and binary constraints (6). The time window constraints (3)
ensure vehicles service the customers within required time windows. The route length
constraints (4) ensure the tour is within vehicle endurance limits.

In addition, we accommodate customer priorities, asymmetric route lengths, threat
areas and no-fly zones. We encapsulate these restrictions in our objective function (1),
where the asymmetric route lengths are reflected in the segment cost c;,. We penalize
segments that enter threat areas and no-fly zones based on the time spent in these areas
and add the penalty sp;, to solutions containing the offending segment. Lastly, we add

the priority penalty p; for each unvisited customer.

2.2 Heuristic Approaches

In terms of computational complexity, the TSP belongs to the class NP-hard
(Lawler et al 1985). A polynomial-time algorithm does not exist for members of this
class, and it is unlikely one will ever be discovered (Parker and Rardin 1982a, 1982b).
The number of possible solutions to the TSP grows at a factorial rate as the number of
customers increases, which makes enumeration algorithms unappealing. Consequently,
heuristic approaches dominate the solution techniques for the TSP and VRP (Brandao
and Mercer 1997, Carlton 1995, Clarke and Wright 1964, Gendreau et al 1994, Gendreau
et al 1998, O’Rourke 1999, Rochat and Semet 1994, Ryan et al 1999, Semet and Taillard
1993, Solomon 1987, Tsubakitani and Evans 1998). Heuristic approaches provide no
guarantee of optimality, although most provide at least a feasible solution in a relatively
short amount of time. Timeliness of a solution is very important for our implementation,

as UAV operations are typically time-sensitive.

2.2.1 Tour Construction and Tour Improvement Algorithms

Laporte (1992a, 1992b) surveys current optimal and heuristic techniques for both
the TSP and VRP and notes that heuristic techniques fall into two categories: tour
construction algorithms and tour improvement algorithms. Tour construction algorithms
start with all customers unassigned and attempt to build a near-optimal solution.
Conversely, tour improvement algorithms start with the customers assigned and attempt
to improve the solution by changing the order in which the vehicles visit the customers or

changing which vehicles visit which customers.

Some common tour construction algorithms include nearest neighbor
(Rosenkrantz et al 1977), the Clarke and Wright savings (Clarke and Wright 1964),
sweep (Gillett and Miller 1974), and their insertion versions. At each iteration, nearest
neighbor adds the nearest customer to the end of a current tour until all customers are
visited. The vehicle then returns to the starting point after the last customer is added.
While very quick, this approach’s solutions are generally poor. The Clarke and Wright
savings heuristic starts with all customers visited via independent tours. It then chooses
the next customer to add to the current tour based on the net savings of visiting the
customer pair on a single tour versus two separate tours. The sweep heuristic attempts to
cluster the customers first by ‘sweeping’ in a circle from the depot. The insertion
versions are more complex and allow for customers to be inserted anywhere in the tour.
Insertion algorithms generally produce higher quality solutions (Laporte 1992a, 1992b).

Solomon (1987) modifies some of the common tour construction heuristics to
handle the VRP with the addition of time windows (TW). He modifies the nearest
neighbor, savings, and sweep heuristics, and provides an insertion-based heuristic with
three different insertion criteria. He also provides the MVH VRP TW test cases. These
test cases form the literature’s standard for measuring MVH VRP TW algorithm
performance. His most robust insertion algorithm achieves the best results for 27 of the
56 problems tested and a lower bound within 8.3% of best known solutions for the
remaining 29 problems (Solomon 1987). (All further references to Solomon’s insertion

heuristic are based exclusively on the most robust version.)

10

2.2.2 Solomon’s Insertion Heuristic

Solomon suggests two methods for initializing tours in his insertion heuristic.

The first routes to the farthest customer, and the second routes to the customer with the
earliest deadline. Once the tour is initialized, remaining customers are inserted until
either the vehicle is at maximum capacity or no other customers can be added without
violating time window feasibility or vehicle endurance. At this point, another tour is
initialized and the process continues.

The algorithm inserts customer u between customers i and j based on two criteria:
CI(i,u,j) and C2(i,u,j). CI(i,u,j) determines the best insertion point for each unassigned
customer u as

Cl(i(u),u, j(u)) = min(cl(ip,u, Jpa)) p=1...m (8a)

and

cliyou, j,m)=0lld, +d, —p-d;)J+a2b, -b) (8b)
where d; is the distance between customers i and j, bj, is the beginning service time of
customer j with customer u inserted before it, b; is the beginning service time of customer
Jj without customer u inserted and p is the position, from 1 to m, within the current tour.
Parameters o/ and o2 must be positive and sum to one, while parameter £ must be
positive.

Equation (8a) attempts to minimize the cost of inserting customer « into an

emerging tour in terms of distance added (d;, + d,j - ud;j) and delay in service to the

following customer (b, - bj). Parameter p determines how much of the original distance

between customers i and j is subtracted from the distance between customer i to customer

11

u to customer j, while parameters ¢/ and o2 balance the relative importance of distance
and time window feasibility. All three parameters are user set.

Next, the algorithm chooses which customer to insert based on criteria C2(i,u,j) as

C2(i(u" ', j(u")) = max(d-d,, - Cl(i(u),u, j@))) Vunrouted customer u. (9)
Equation (9) inserts the unassigned customer u with the largest ‘savings’ compared to the
distance between the customer and the depot 0. Parameter A is the multiplier for the
distance. The insertion continues until the algorithm has routed all customers (Solomon
1987).

Time window feasibility is maintained throughout the algorithm. Solomon’s
Lemma 1.1 states that if a customer is inserted into a tour that is time window feasible, it
remains time window feasible if the insertion does not result in a delay to the following
customer (1987). Therefore, when we insert a new customer, we need only check from
the insertion point until we (1) find a customer whose service time is not delayed, (2) we
find a time window violation, or (3) we reach the end of the tour.

Since a VRP is very similar to the TSP, we can easily modify many of the
algorithms developed for one problem to find solutions for the other. For example, an
algorithm developed for the VRP can be used for the TSP by relaxing the vehicle
capacity constraints.

We use a tour construction algorithm based on Solomon’s insertion heuristic in
our JTS algorithm. Solomon develops his algorithm for the VRP with time windows.

We use the same algorithm, but remove vehicle capacity constraints.

12

2.2.3 k-opt Improvement Algorithms

The k-opt algorithms are common tour improvement procedures. In the k-opt
algorithm, k routes are dropped and replaced at each iteration until no further improving
moves exist. For example, a move that swaps two adjacent customers, thus exchanging

two routes, is a two-opt move (assuming the routes are symmetric).

2.2.4 Tabu Search

The more robust algorithms contain both tour construction and k-opt improvement
moves. Of the heuristic approaches, Laporte (1992b) states that the tabu search heuristic
may be one of the best for TSP and VRP. Indeed, tabu search’s proven record in solving
these types of problems (Brandao and Mercer 1997, Carlton 1995, Gendreau et al 1994,
Gendreau et al 1998, O’Rourke 1999, Rochat and Semet 1994, Ryan er al 1999, Semet
and Taillard 1993) motivates its use in this effort.

Tabu search (TS) is a meta-heuristic developed by Glover (1989, 1990a). TS
provides a methodology to escape local optima by use of recency-based memory. The
search moves from solution to solution while maintaining a list of recent moves. The
moves in this list are tabu or off-limits. This stops the algorithm from cycling back to
local optima after taking a non-improving move (Glover and Laguna 1997). The
literature provides many variations and extensions of TS implementation (see Glover and
Laguna 1997).

Many tabu search implementations use a heuristic to build a starting solution
(Brandao and Mercer, 1997; Carlton, 1995; Gendreau et al 1994, Gendreau et al 1998;

Rochat and Semet, 1994). This approach generally improves the quality of the solution

13

and the speed of the algorithm. Carlton (1995) and Rochat and Semet (1994) implement
Solomon’s insertion heuﬁstic for this purpose, with both noting the degree to which the
starting solution improved the overall solution depends upon the parameters used and the
configuration of the customers.

Carlton (1995) develops algorithms to solve the VRPTW using a reactive tabu
search (RTS) meta-heuristic. Reactive tabu search (RTS) (Battiti 1996) allowé the length
of the tabu list to change based on the quality of the search. When the search appears to
be cycling through the same solutions, the algorithm increases the tabu length to force
search diversification and break the cycle.

Two important facets of any good TS algorithm are intensification and
diversification (Glover and Laguna 1997). Intensification is the process of conducting a
more thorough search in the areas of the solution space where the algorithm has found
good solutions. By contrast, diversification drives the search into new, previously
unexplored, areas of the solution space.

One popular intensification technique is a candidate or elite list. The TS starts by
diversifying and quickly scanning the solution space. The top candidate solutions found
are saved in an elite list. After the diversification period, the search moves to each
candidate in the elite list and intensifies the search in the neighborhoods of those elite
solutions. Our approach is similar to the elite list, except we begin the TS with an elite

list already in place. We obtain this elite list using tour construction heuristics.

14

2.2.5 Jump Search

Tsubakitani and Evans (1998) developed the jump search (JS) meta-heuristic as a
way to generate good candidate solutions using a quick tour-construction heuristic and
then use these candidate solutions as ‘jump points’ for a local search. The idea springs
from the notion that there exists plateaus of good solutions within the solution space, and
these jump points provide quick access to those plateaus. In their study, Tsubakitani and
Evans use JS to guide two-opt and three-opt improvement algorithms to solve a 1-TSP
without side constraints.

Their JS uses six different tour construction heuristics to generate a list of
candidate jump points. The algorithm orders the candidate jump points based on
objective function value. If two heuristic solutions differ by a single move, the algorithm
keeps the solution with the best objective function value. The algorithm then launches a
local search from the best available jump point. When JS finds a local optimum, the
search moves to the next jump point on the candidate list. This process continues until all
jump points are exhausted or the algorithm reaches a predetermined time limit or number
of iterations.

JS produces equal or better solutions than TS for nearly all of the test cases
Tsubakitani and Evans examine. However, they compare their JS algorithm to a very
basic TS algorithm, one without intensification or diversification, and on a very basic
problem, 1-TSP (Tsubakitani and Evans 1998). We hypothesize that in complex
problems, these good plateaus may contain many local optima; consequently, it may be

unwise to give up the search when we find the first local optimum.

15

TS provides a mechanism to escape the local optima and continue the search. We
can search the plateau more thoroughly and therefore intensify the search in promising
areas. When the rate of improvement in the solution quality begins to level off, the
procedure moves to the next jurﬂp point and diversifies to an unexplored area of the
solution space. Tsubakitani and Evans suggest that a JS / TS hybrid (JTS) could be a
very effective search algorithm. We explore this suggestion and apply it to the UAV

routing problem.

2.3 Earlier UAV Routing Efforts

Our UAV research effort is one of many performed in recent years. Sisson (1997)
constructs a RTS algorithm based on Carlton’s (1995) RTS approach to solve the UAV
routing problem while accounting for wind effects and attrition due to enemy actions.
Sisson’s approach determines the minimum number of vehicles required to cover a
specified target area given a risk assessment based on enemy threat and provides insight
into the minimum tour and minimum risk involved in providing the necessary coverage.
The routes are passed into a Monte Carlo simulation to assess vehicle losses and expected
coverage of targets (Sisson 1997).

Ryan et al (1999) centers on finding the ‘robust tour’, using the minimum number
of vehicles. He defines the ‘robust tour’ as the route least affected by changes in threat,
target area service times, and weather conditions. Using an embedded optimization
approach, his Monte Carlo simulation generates random weather conditions and

probabilities of survival for each target. He then passes these values into a reactive tabu

16

search (RTS) algorithm to search for the best solution under each set of variations, with
the robust solution defined as the solution appearing most often.
While Ryan’s results are useful and appropriate for autonomous UAVs in which

missions are preplanned, they do not address the concerns of the more dynamic missions

of UAVs such as the US Air Force’s RQ-1A Predator (O’Rourke 1999). USAF pilots in
a ground control station control the Predator vehicle remotely. Consequently, they are
able to change the Predator routes as the mission dictates. O’Rourke recognizes the need
for a program capable of returning the best available tour based on current conditions and
return this solution in a short enough time for it to be of use.

O’Rourke’s efforts focus on a dynamic routing algorithm. Building upon the RTS
algorithm from Ryan ez al (1999) and Carlton (1995), he develops a Java-based
application to solve this problem. O’Rourke adds functionality to the algorithm to
account for, and take advantage of, multiple wind tiers. Additionally, his program
incorporates time windows, no-fly zones, and threat areas as in previous efforts. He adds
the ability to perform dynamic routing, so vehicles may start from their current location
and return to the depot, and he improves the performance of the algorithm using a

reactive penalty scheme.

2.4 Analysis of Heuristics

As Hooker (1995) observes, too much of heuristic research is reduced to
competitive testing. Researchers are forced to show that their new algorithms are faster
or produce higher quality solutions than existing algorithms to be published. What is

typically missing is any kind of explanation as to why the algorithms perform as they do

17

and any statistical support that the superior performance of the algorithm extends beyond
the test problems.

We develop and test five local search algorithms using empirical experimentation
to gain insight into which approach is superior and why. Due to differences in
programming techniques, testing competing algorithms head-to-head is problematic. We
overcame this problem by modifying a common algorithm to isolate the differences due

to the particular modifications made to that algorithm.

2.5 Conclusion

Although a tremendous amount of research exists on the TSP and its variants, few
have endeavored to incorporate multiple non-homogeneous vehicles and multiple depots
into the solution algorithms. These side constraints are very important to real-life
problems in the military and civilian sector. While prioritizing customers for inclusion
into tours is not tremendously difficult, it seems to have been neglected entirely,
suggesting that customer prioritization is prominent mainly in military applications.

TS is a popular heuristic for solving TSPs and it provides good results. Many TS
algorithms are primed with an initial solution provided by a tour construction heuristic
that improves the performance of the algorithm. Carlton (1995) and O’Rourke (1999)
demonstrate that a robust TS algorithm can overcome an arbitrary starting solution. We
investi gate TS performance when provided multiple, high-quality initial solutions.

When the tour construction heuristic generates a good starting solution for the TS,
it finds high quality solutions rather quickly. However, the quality of the solutions

generated depends on the configuration of the customers and the tour construction

18

heuristic used. Unfortunately, we do not know the customer configuration when the
algorithm is developed. We can overcome this dilemma by generating multiple initial
solutions using a tour construction heuristic with different initialization schemes and
multiple parameter settings. In the next chapter, we discuss how we implement this

approach.

19

Chapter 3. Methodology

3.1 Solution Representation

The first step in building our JTS hybrid algorithm is determining how we
represent the solution in the algorithm. We use a solution representation developed by

Harder (2000). Figure 1 shows the representation of the problem solution.

Solution
‘‘‘‘‘‘ o060 ""—_—————|
Tour 1 Tour 2 . Tour n

Customer 1 Vehicle Customer 1 Vehicle Customer 1 Vehicle
Customer 2 Customer 2 Customer 2

[] ® [J

[[®

| | |
Y A 4 Y
Customer ml Customer m2 Customer mn

Figure 1 - Representation of Problem Solution

Each solution is comprised of » tours, where 7 is the number of available vehicles.
Each tour has an associated vehicle and an ordered list of customers. We evaluate each
tour individually for solution quality based on the associated vehicle’s attributes and
depot location. If we lack the vehicle resources to cover all targets, a dummy tour

contains customers that are not visited, and the solution is penalized based on the priority

20

of those customers. A significant advantage of this representation is it implicitly captures

the standard tour (2), binary (6), and sub-tour breaking (7) constraints.

3.2 Tour Construction Heuristic

We build our ‘jump point’ solutions using an insertion heuristic based on
Solomon (1987). While Solomon’s insertion heuristic arbitrarily chooses the next tour to
construct, we build a tour for the vehicle closest to the initializing customer, which allows
us to take advantage of multiple depots. We account for a heterogeneous vehicle fleet by
evaluating each vehicle by its individual capabilities and only assigning the vehicle
customers it is capable of servicing. Restricted time windows, or time walls, are handled
in a similar way to time windows by maintaining time windows/wall feasibility
throughout the algorithm. To incorporate customer priorities, we remove customers from
the dummy tour based on their priority (i.e., all priority 1 customers are assigned to real
vehicles before priority 2 customers are considered). The logic flow for the tour
construction algorithm is:

Step CON-1: Calculate cost matrix for each available vehicle.

Step CON-2: Build parameter matrix.

Step CON-3: Select the next set of parameters.

Step CON-4: Initialize the next tour based on the selected initialization method.

Step CON-5: Insert customers based on equations (8) and (9).

Step CON-6: When the tour is full return to CON-4.

Step CON-7: When all tours are full or all customers are assigned add the solution to the

jump point array.

21

Step CON-8: If all parameters have been used, return the jump point array, STOP.

Otherwise, return to CON-3.

3.2.1 Parameter Settings

To develop a complete list of diverse starting solutions, we use a variety of
parameter settings in our tour construction heuristic. We use each set of parameters in
conjunction with both initialization criteria discussed in Section 3.2.2. We employ the
following parameter ranges suggested by Rochat and Semet (1994)

1=0.0;0.1;...; 1.0

a2=1-al
)= 1) A=1.25;1.50;1.75;2.00 and p=A1-1
77 712)A4=0.0;0.5,1.0;1.5 and u=1

These parameter ranges, combined with both initialization methods, yield 176 different

combinations.

3.2.2 Tour Initialization

Since we attempt to generate a list of diverse solutions, we use two initialization
techniques. We modify the first initialization method to include penalties for time spent
in threat areas or no-fly zones, effectively assigning the costliest customers first. Since
we have multiple depots, we find the customer with the largest minimum cost to any of
the remaining vehicles. We assign this customer to the nearest remaining vehicle and
build a tour for that vehicle.

For the second initialization method, we find the customer with the earliest
deadline (latest arrival time). We assign the customer to the nearest remaining vehicle

22

and build a tour for that vehicle. Since we have a heterogeneous vehicle fleet, only
vehicles capable of servicing the customer are considered. In both cases, priority of

customers takes precedence over other selection criteria in initializing a tour.

3.2.3 Customer Insertion

Customers are inserted based on Solomon’s original algorithm using equations (8)
and (9). However, only customers the vehicle is capable of servicing are considered. The
insertion considers customers in priority order and continues until all customers are
assigned or all tours are full.

Time window and time wall feasibility is maintained throughout the process. Due
to Solomon’s lemma, we are able to check time window and time wall feasibility very
efficiently. Vehicle’s arriving before a customer’s time window must wait until the time
window begins. Vehicle’s unable to complete service before a customer’s time wall
begins must wait until the end of the time wall to start service. Only feasible customer

insertions are considered.

3.2.4 Completed Solutions

A tour is full when any further insertions will violate time window/time wall
feasibility or vehicle endurance. The solution is complete when all available vehicles
have full tours or all customers have been assigned. We insert completed solutions into
the jump point array in descending order of solution quality.

A solution possessing the same number of vehicles, travel distance, waiting time,
and penalty as an existing solution in the jump point array is considered equal to the

solution and is discarded. In their original jump search algorithm, Tsubakitani and Evans

23

(1998) retained only the jump points from mutually exclusive neighborhoods. Even with
the simplest of neighborhoods, this neighborhood determination becomes a complex and
computationally expensive task. Through preliminary empirical testing on the Solomon
MVH VRP TW test cases, we determined this approach was not cost-effective. The rate
of duplicate best solutions found by the local search algorithms is less than 7% when all

jump points are explored. Consequently, we simply retain all unique jump points.

3.3 Local Search Heuristics

We explore each jump point provided by our tour construction algorithm with
three different local search heuristics: a first best local search, a global best local search,
and a global best tabu search. As an experimental control, we test a reactive tabu search
initialized two different ways. First, we generate all of the jump points and initialize the
RTS with the best jump point (RTS-best). Second, we initialize the RTS after generating

a single jump point (RTS-one).

3.3.1 First Best Local Search

The first best local search (FBLS) makes the first improving move found and
continues doing so until no more improving moves can be found indicating we have
reached a local optimum. For this algorithm, we consider only single customer insertion
moves. A single customer can be removed from one tour and inserted into another tour
or a different spot in the same tour. Only feasible insertions are considered. The logic
flow for the FBLS algorithm is:

Step FBLS-1: Improve tours individually by rearranging customers within tours.

Step FBLS-2: Improve the solution further by rearranging customers between tours.

24

Step FBLS-3: If we found at least one improving move, try to assign customers from the
dummy tour.
Step FBLS-4: If we found at least one improving move, return to FBLS-1.

Step FBLS-5: If we did not find an improving move, return the solution, STOP.

3.3.1.1 Rearranging Customers within Tours

Starting with the first customer in the first tour, we temporarily remove individual
customers while noting the current cost to service that customer. The cost of servicing a
customer is the travel distance, the wait time, and the penalty associated with the
segments connecting the customer to the tour. These values for customer u currently
between customers i and j can be calculated with the following equations

d, +d,—d; where djis the distance between i and j (10)
[travel distance]

w, +w, —w, where wj; is the wait time when j follows i 11
[wait time]

P + p,; — p; Wwhere pj; is the penalty between i and j (12)
[penalty]

Using equations (10), (11), and (12), we calculate the cost to service the customer
at every other position in the tour starting from the first position. If the new cost of
service is less than the current cost of service, we check time window/time wall and
vehicle endurance feasibility. If the move is feasible, we insert the customer in the new
position and check the next customer. If we cannot find any feasible improving moves

for the customer, we return it to its original position and check the next customer.

25

When we cannot find any feasible improving moves for the current tour, we check
the next tour. When we can no longer improve any of the tours, we attempt to rearrange

customers between tours.

3.3.1.2 Rearranging Customers between Tours

Starting with the first customer in the first tour, we try to find a cheaper position
for the customer in another tour. We evaluate the current cost of service for the customer
using equations (10), (11), and (12).

We consider other tours in lexicographical order if the vehicle type is appropriate
and there is sufficient capacity. If the vehicle can service the customer, we calculate the
new cost of service for each position in the tour starting with the first position. If the new
cost of service is less than the current cost of service, we check time window/time wall
and vehicle endurance feasibility. If the move is feasible, we insert the customer in the
new tour position and check the next customer. If we cannot find any feasible improving
moves for the customer, we check the next customer.

When we cannot find any feasible improving moves for any of the customers in
the tour, we check the next tour. When we can no longer improve any of the tours by

rearranging customers between them, we attempt to empty the dummy tour.

3.3.1.3 Assigning Customers from the Dummy Tour

By reducing the costs of the tours, we hope that we have made room for
customers not currently assigned. Since we are maximizing coverage first and
minimizing cost second, we assign customers from the dummy regardless of the increase

in costs.

26

Considering each dummy tour customer in priority order, we consider inserting
the customer into the other tours with appropriate vehicle type and sufficient capacity. If
a vehicle can service the customer, we try to find the best feasible position for it in the
tour. If we assign any customers from the dummy tour, we return to FBLS-1 and attempt

to improve the solution further.

3.3.2 Global Best Local Search

The global best local search (GBLS) is similar to the FBLS algorithm; however,
we check all possible moves in the current neighborhood before choosing the best move.
As before, we consider only feasible single customer insertion moves. We stop when we
cannot find any feasible improving moves indicating we have reached a local optimum.
The logic flow of the global best local search algorithm is:

Step GBLS-1: Check single customer insertions within tours.

Step GBLS-2: Check single customer insertions between tours.

Step GBLS-3: Make the best move found.

Step GBLS-4: If we found an improving move, try to assign customers from the dummy
tour.

Step GBLS-5: If we found an improving move, return to GBLS-1.

Step GBLS-6: If we did not find an improving move, return the solution, STOP.

3.3.2.1 Check Insertions within Tours

Considering each customer in each tour, we note the current cost to service that
customer using equations (10), (11), and (12). We then determine the cost of inserting

the customer into every other position in the current tour.

27

The current cost of service minus the new cost of service represents the savings
achieved by making the move. If the amount saved is positive and greater than the best
savings found so far, we check time window/time wall and vehicle endurance feasibility.
If the move is feasible, the move is retained as the best so far. If we cannot find any
feasible improving moves for the customer, we check the next customer.

When we cannot find any feasible improving moves for any of the customers in
the tour, we check the next tour. When we have checked all insertions within tours, we

check insertions between tours.

3.3.2.2 Rearranging Customers between Tours

Starting with the first customer in the first tour, and considering all customers in
all tours, we try to find a cheaper position for the customer in another tour whose vehicle
is appropriate for the customer and has sufficient capacity. We evaluate the current cost
of service for the customer using equations (10), (11), and (12).

If the vehicle is capable of servicing the customer, we calculate the new cost of
service for each position in the tour starting with the first position. If the amount saved is
positive and greater than the best savings found so far, we check time window/time wall
and vehicle endurance feasibility. If the move is feasible, the move is retained as the best
so far. If we cannot find any feasible improving moves for the customer, we check the
next customer.

When we have checked all insertion moves within and between tours, we make

the best move found. If we did not find a feasible improving move, we have reached a

28

local optimum and we return the solution. If we were able to make an improving move,

we attempt to empty the dummy tour.

3.3.2.3 Assigning Customers from the Dummy Tour

Assigning customers from the dummy tour is accomplished exactly as in the

FBLS algorithm explained in section 3.3.1.3.

3.3.3 Global Best Tabu Search

The global best tabu search (GBTS) is similar to the global best local search
algorithm; however, we implement a tabu list to escape local optimum. The algorithm
considers the same insertion moves as the first best and global best local search
algorithms.

At every iteration, all possible insertion moves are evaluated and the best feasible
non-tabu move is chosen. The best move in this case may actually be non-improving.
The algorithm continues for a minimum of 100 iterations. If the algorithm has found a
new best solution within the final 10 iterations, the search continues until 10 iterations are
performed without improving the best solution. We choose these values based on
empirical testing. The flow of the global best tabu search algorithm is:

Step GBTS-1: Check single customer insertions within tours.

Step GBTS-2: Check single customer insertions between tours.

Step GBTS-3: Check the tabu status of the best move found. If move is tabu and does
not produce a solution better than the best found so far, check the next best
move. If all feasible moves are tabu, the oldest half of the tabu list is

discarded and the moves are checked again.

29

Step GBTS-4: After the move is made, it is added to the tabu list.

Step GBTS-5: Check to see if the new solution is the best found so far.

Step GBTS-6: If an improving move was made, try to assign customers from the dummy
tour.

Step GBTS-7: If we have not reached 100 iterations or we have found a new best solution

in the last 10 iterations, return to GBTS-1.

3.3.3.1 Check Insertions within Tours

Checking for insertion moves within tours is the same as in the global best local
search algorithm described in section 3.3.2.1. However, we accept non-improving
moves, i.e. negative savings, and since our best move may be tabu, we retain the top 150

moves.

3.3.3.2 Rearranging Customers between Tours

Again, this is done the same as in the global best local search algorithm described

in section 3.3.2.2 with the exceptions noted in the previous paragraph.

3.3.3.3 Checking the Tabu Status

We use the customer number to denote the tabu status of a move. The length of
the tabu list is set to 35% of the number of customers. How a move is denoted, the length
of the tabu list, and the neighborhood size are closely tied. These factors must be
balanced to avoid cycling and still conduct a thorough exploration of the search space

near the jump point. We chose to set these factors based on empirical testing.

30

Aspiration criterion is a TS technique that allows a move to be made in spite of its
tabu status. A very common aspiration criterion is to accept the move if that move leads
to a new best solution. We use this criterion in our GBTS algorithm. If the top 150
moves found are all tabu and do not meet the aspiration criterion, we discard the oldest

half of the tabu list.

3.3.3.4 Assigning Customers from the Dummy Tour

Assigning customers from the dummy tour is accomplished exactly as in the

FBLS algorithm explained in section 3.3.1.3.

3.3.4 Reactive Tabu Search

The reactive tabu search (RTS) algorithm is identical to the GBTS algorithm with
two exceptions. The first difference is the number of iterations. The RTS algorithm
executes for a minimum of 2000 iterations and continues until 200 iterations are
performed without finding a new best solution.

The second, and key, difference is that we adjust the length of‘ the tabu list based
on the productivity of the search. If we have performed 100 iterations without finding a
new best solution, we increase the length of the tabu list by one. We continue increasing
the length of the tabu list at each iteration until we find a new best solution or the length
of the tabu list reaches 50% of the number of customers. At this point, we reset the
length of the tabu list to 35% of the number of customers. As in the GBTS algorithm, if
the top 150 moves found are all tabu and do not meet the aspiration criteria, we discard

the oldest half of the tabu list. The flow of the reactive tabu search algorithm is:

31

Step RTS-1:

Step RTS-2:
Step RTS-3:

Step RTS-4:

Step RTS-5:

Step RTS-6:

Step RTS-7:

Step RTS-8:

If we have performed 100 iterations without finding a new best solution
and the length of the tabu list is less than 50% of the number of customers,
increase the length of the tabu list by 1. If the length of the tabu list is
50% of the number of customers, reset the length to 35% of the number of
customers.

Check single customer insertions within tours.

Checkvsingle customer insertions between tours.

Check the tabu status of the best move found. If move is tabu and does

not produce a solution better than the best found so far, check the next best

~move. If all feasible moves are tabu, the oldest half of the tabu list is

discarded and the moves are checked again.

After the move is made, add it to the tabu list.

Check to see if the new solution is the best found so far. If so, reset the
length of the tabu list to its original length.

If an improving move was made, try to assign customers from the dummy
tour.

If we have not reached 2000 iterations or we have found a new best

solution in the last 200 iterations, return to RTS-1.

3.4 The Jump Search Algorithm

Our JS algorithm uses the tour construction heuristic described in section 3.2 to

generate up to 176 unique solutions. As each solution is generated, JS stores the solution

in an array sorted in descending order by solution quality. JS then initializes a local

32

search using one of the local search algorithms described in section 3.3 for each jump
point starting from the first.

For the FBLS algorithm, we perform local searches from each jump point until 25
jump points are searched without improving the best solution found. For the GBLS
algorithm, we perform local searches from each jump point until 15 jump points are
searched without improving the best solution found. For the GBTS algorithm, we
perform searches from each jump point until 10 jump points are searched without
improving the best solution found. These values are éstablished through empirical testing
described in section 4.4. The RTS algorithm explores only a single jump point, either the

best jump point found (RTS-best) or a single generated jump point (RTS-one).

3.5 Conclusion

We design a representation of the solution that makes it easier to incorporate
multiple heterogeneous vehicles and multiple depots. This solution also implicitly
enforces the standard tour (2), binary (6), and sub-tour breaking (7) constraints.

Our tour construction algorithm builds multiple high-quality jump point solutions.
We then use three different local search algorithms, first best local search (FBLS), global

best local search (GBLS), and global best tabu search (GBTS) to explore these jump

points.

33

Chapter 4. Results

4.1 Description of Solomon Instances

We use the Solomon MVH VRP TW problem instances to test the performance of
JTS against published solutions and to establish our parameter values. The Solomon
problems were randomly generated to model several factors common to VRP TW
problems. The factors modeled include geographic positioning, number of customers a
vehicle can service, and time window characteristics such as the tightness of the time
windows and the percentage of customers with time windows.

The 56 Solomon problems are divided into six problem sets: R1, C1, RC1, R2,
C2, and RC2. Each problem set has between 8 and 12 problems . Each problem contains
data for 100 customers. The problems in sets R1 and R2 contain customers with random
geographic coordinates. Sets C1 and C2 contain customers with clustered geographic
coordinates. Sets RC1 and RC2 contain customers with both random and clustered
coordinates.

Each problem set contains problems in which 25%, 50%, 75%, or 100% of the
customers have time windows. In sets R1, C1, and RC1, the time windows are short and
vehicle capacities small. In sets R2, C2, and RC2, the time windows are long and

vehicles capacities large allowing each vehicle to service more customers (Solomon,

1987).

34

4.2 Tour Construction Parameters

Our first task is to determine if all of the parameter values suggested by Rochat
and Semet (1994) are needed. If any parameter is unnecessary, we can avoid generating
all 176 starting solutions with the tour construction heuristics. We solve each instance of
the Solomon test problems with the jump search first best (JFB), jump search global best
(JGB), and jump search tabu search (JTS) algorithms. We note the parameter values used
to generate the best solution found for each problem by each algorithm.

If each parameter value has the same probability to generate the best solution, we
would expect the values associated with the best solutions to appear in the same
percentage as they appear in the parameter sets. Since we know the expected distribution
of the parameter values, we can perform a goodness-of-fit test to determine if the actual
distribution matches the expected distribution.

We do not wish to tune our algorithm specifically to the Solomon problem sets.
Therefore, we require a high degree of confidence, 95% overall, before rejecting the
hypothesis that the actual distribution of parameter values is equal to the expected
distribution. Parameter o2 is derivéd from parameter o1 and has the same distribution.
Since we have four parameter distributions and three algorithms, we must perform each
hypothesis test at 99.58% to have a 95% percent confidence overall.

Table 1 contains the expected distribution for each parameter and the actual
distribution that produced the best solutions for each algorithm. When more than one
parameter set produced the same best solution, a fractional count is added to the value

cell. In all cases, the test statistic, XZ, is less than the critical value so we fail to reject the

35

hypothesis that the data values fit the expected distribution. Therefore, we retain all

parameter values for our algorithm.

Table 1 - Parameter Value Goodness-of-fit Test

parameter ol JFB JGB JTS expected value
| 0.0 2.37 2.08 0.72 5.09
0.1 5.58 4.15 3.80 5.09
0.2 3.80 4.56 4.01 5.09
0.3 2.16 2.71 3.66 5.09
04 2.85 4.45 3.66 5.09
0.5 7.16 2.00 8.45 5.09
0.6 1.92 3.29 6.03 5.09
0.7 9.01 9.67 5.93 5.09
0.8 6.44 7.55 5.38 5.09
0.9 5.54 5.54 5.33 5.09
1.0 9.12 9.98 9.04 5.09
X 13.93 15.75 10.74
X%(10,.0042) 25.68 25.68 25.68
parameter | JFB JGB JTS expected value
0.25 4.61 3.39 9.31 7
0.50 5.02 5.72 6.83 7
0.75 4.71 10.10 5.97 7
1.00: 41.66 36.75 33.89 35
X* 3.39 3.56 0.95
X%(3,.0042) 13.21 13.21 1321
parameter A JFB JGB JTS expected value
0.00 1.33 1.67 2.53 7
0.50 6.48 471 5.74 7
1.00 9.22 12.69 9.72 7
1.25 4.61 3.39 9.31 7
1.50 18.90 14.39 13.45 14
1.75 4.71 10.10 5.97 7
2.00 10.75 8.98 9.28 7
X? 10.63 13.24 5.81
X%(6,.0042) 18.98 18.98 18.98
init method JFB JGB JTS Expected
0.0 38.14 32.18 3433 . 28
1.0 17.86 23.82 21.67 28
X? 7.34 1.25 2.86
X*(1,.0042) 8.20 8.20 8.20
36

4.3 Tabu List Length

Having established our tour construction parameters, we next determine the
length of our tabu list. Fixing the number of iterations to a base of 100 and increases of
10 as described in section 3.3.3, we vary the length of the tabu list from 5% to 50% of the
number of customers in 5% increments.

Table 2 contains the sum of the average distances for each problem set produced
by the JTS algorithm for problems with 25, 50, 75, and 100 customers. The 25, 50, and
75 customer problems are generated by using the first 25, 50, and 75 customers of the
100 customer problems. To simplify comparisons, we minimized distance only when
solving each problem. The tabu list length appears in the column on the left.

Since we believe the UAV problems will typically contain at least 100 customers,
we give more credibility to the larger problems. While the difference in total distance is
relatively small across the different tabu list lengths, there is a definite sweet spot

between 30% and 40%. Therefore, we set the initial tabu list length to 35% of the

number of customers.
Table 2 — Tabu Length Test
Length 25 Customers 50 Customers 75 Customers 100 Customers
5% 2031.77 3662.49 5242.55 6256.46
10% 2025.41 3646.82 5213.47 6219.27
15% 2021.52 3640.00 5187.80 6202.68
20% 2023.99 3628.76 5170.97 6193.59
25% 2017.30 3606.87 5173.58 6186.90
30% 2014.27 3614.20 5182.11 6179.16
35% 2006.05 3608.99 5166.91 6179.06
40% 2003.72 3597.96 5184.97 6178.50
45% 2005.87 3597.00 5161.07 6187.97
50% 201041 3596.24 5182.01 6200.39

37

4.4 Jump Points

For the Solomon problem sets, the tour construction heuristic generates an
average of 141.82 unique jump points. With 176 different parameter sets, the average
percentage of duplicate jump points generated is 19%. Recall the generated jump points
are ordered. When all jump points are explored, the average jump point index leading to
the best solution is 42.84 for the JFB algorithm, 41.66 for the JGB algorithm, and 42.05

for the JTS algorithm. This implies the better jump points lead to the best solutions.

Table 3 — Average Best Jump Point Index

JFB JGB JTS
average best jump point 42.84 41.66 42.05
standard deviation 43.46 48.68 42.06

Since timeliness of the solution is important to us, we do not want to explore all
jump points. Rather than explore a fixed number of jump points, we establish the number
of jump points to explore without finding a new best solution. If we explore this threshold
number of jump points without improving the best solution so far, the overall search

process is halted. By setting this threshold higher, we may improve the solution;

however, we will definitely increase the runtime of the algorithm. This tradeoff between -

solution time and quality is a common tradeoff in heuristic implementation.

Table 4 contains the average distance found at different jump point thresholds for
the JFB algorithm. The column on the far right shows how much we can improve the
solution if we simply continued on from that threshold point to explore all points. When

we reach a point within 1% of the best distance, we feel we have explored a sufficient

38

number of jump points. For the JFB algorithm, this point is reached with a threshold of

25 jump points.

Table 4 - Jump Point Thresholds for JFB

Jump Point % Over

Threshold R1 C1 RC1 R2 C2 RC2 Total Best
1 1279.43 84539 1439.83 1017.80 600.08 1264.76 6447.29 3.61%
5 1271.39 842.20 1431.39 101043 598.53 1237.03 6390.97 2.70%
10 1269.77 841.11 1427.81 1003.87 598.53 1199.49 6340.58 1.89%
15 1265.75 841.11 1425.02 997.78 598.53 1186.48 6314.67 1.48%
20 1265.75 841.11 1421.64 994.18 598.53 1169.18 6290.39 1.09%
25 1262.55 834.82 1421.64 988.88 598.53 1169.18 6275.60 0.85%
30 1260.94 834.82 1421.64 982.68 598.53 1165.70 6264.31 0.67%
all 1252.69 833.97 1419.90 976.26 598.53 1141.41 6222.76

Table 5 contains the same data for the JGB algorithm. For the JGB algorithm, we

are within 1% of the best with a threshold of 15 Jjump points.

Table 5§ — Jump Point Thresholds for JGB

Jump Point % Over

Threshold R1 C1 RC1 R2 C2 RC2 Total Best
1 1273.49 834.28 1444.23 1018.93 59527 1226.34 6392.54 2.87%
5 1259.86 833.19 143539 1004.8 593.16 1203.08 632948 1.85%
10 1259.24 833.19 1426.77 999.51 593.16 1176.37 6288.24 1.19%
15 1256.59 833.19 1426.77 986.36 593.16 1175.17 6271.24 0.91%
20 1254.13 833.19 1422.21 986.36 593.16 1171.72 6260.77 0.75%
25 1253.6 833.19 1418.24 985.54 593.16 1168.81 6252.54 0.61%
30 1252.07 833.19 1418.24 984.14 593.16 1166.95 6247.75 0.54%
all 1244.96 833.19 1417.27 973.76 593.16 1152.05 6214.39

Table 6 contains the same data for the JTS algorithm. For the JTS algorithm, we
are within 1% of the best with a threshold of 25 jump points. However, the JTS
algorithm takes much longer to explore each jump point than either of the other
algorithms. Since we believe the UAV problems will have a minimum of 100 customers,

39

we would like the average total solution time for the 100 customer problems to be under

one minute on a Pentium II 400 MHz processor.

Table 6 — Jump Point Thresholds for JTS

Jump Point % Over
Threshold R1 C1 RC1 R2 C2 RC2 Total Best
1 1239.26 83291 1410.55 999.48 593.74 1186.38 6262.32 2.68%

5 1231.15 832.91 1404.57 980.38 593.16 1146.76 6188.93 1.48%
10 1230.27 83291 1399.79 976.17 593.16 1146.76 6179.06 1.32%
15 1228.53 832.77 1397.84 971.15 593.16 1146.76 6170.21 1.17%
20 1228.53 832.77 1396.09 966.74 593.16 1146.76 6164.05 1.07%
25 1227.45 832777 1396.09 958.96 593.16 1138.09 6146.52 0.78%
30 1227.45 832777 1396.09 958.74 593.16 1138.09 6146.30 0.78%
all 1222.86 832.77 1389.86 950.36 593.16 1109.69 6098.70

For the JTS algorithm, the number of iterations performed on each jump point and
the number of jump points explored determine the total solution time of the algorithm.
These factors also provide the balance between intensification and diversification. Table
7 contains the average distances for three iteration and threshold combinations with the

desired average solution time.

Table 7 —~ Threshold / Iteration Combinations for JTS

Jump
Point

Threshold Iterations R1 C1 RC1 R2 C2 RC2 Total
10 100 1230.27 83291 1399.79 976.17 593.16 1146.76 6179.06
15 75 1230.82 832.77 1401.31 972.88 593.16 1151.72 6182.65
20 50 1234.61 832.77 1406.10 972.48 593.16 1148.66 6187.78

Although there is no statistical difference between the different combinations, our

intuition leads us to choose a threshold of 10 jump points and a base of 100 iterations.

40

4.5 Heuristic Analysis

To compare the performance of our algorithms, we solved the Solomon problem
sets with each algorithm attempting to minimize distance. The distances produced by the
algorithms are not normally distributed, so we use non-parametric techniques for
comparison. Table 8 contains the minimum distance found for each problem by each
algorithm.

We use the sign test to compare our algorithms. We perform a pair-wise
comparison of the algorithms two at a time and count the number of occurrences where
algorithm one is better than algorithm two. We determine the probability of this count
based on a binomial distribution with 50% probability. If the two algorithms are equal in
efficiency, we would expect each algorithm to have an equal chance of producing the
better answer.

With the exception of the JTS algorithm, none of the algorithms proved
statistically superior to the others. The JTS algorithm proved statistically superior to the
JFB and JGB algorithms with p-values of less than 0.0001 supporting our hypothesis that

exploring the jump points beyond the first local optimal improves the algorithm.

41

Table 8 - Minimum Distances Found by All Algorithms

Problem JFB JGB JTS RTS - best RTS - one
riol 1712.64 1704.81 1678.37 1707.18 1734.13
r102 1535.42 1529.47 1485.33 1500.62 1482.81
1103 1289.28 1296.38 1266.67 1247.28 1240.34
r104 1068.62 1056.90 1032.15 1066.83 1085.20
r105 1433.37 1433.89 1404.25 1446.50 1389.22
r106 1315.17 1296.50 1291.17 1304.70 1332.21
1107 1145.48 1159.27 1123.80 1147.27 1106.34
r108 1049.11 1030.68 992.83 1063.37 1063.37
rl09 1259.32 1228.25 1215.47 1276.89 1271.51
r110 1171.88 1170.23 1153.36 1162.44 1212.26
rl1l 1137.59 1130.52 1107.82 1135.11 1097.74
r112 1032.75 1042.18 1012.07 1001.88 1058.33

R1 Average 1262.55 1256.59 1230.27 1255.01 1256.12
cl01 828.93 828.93 828.93 828.93 828.93
cl02 828.93 828.93 828.93 936.72 928.01
cl103 839.57 831.86 829.27 829.27 836.67
c104 871.34 864.37 864.37 859.39 843.65
cl105 828.93 828.93 828.93 828.93 828.93
c106 828.93 828.93 828.93 828.93 862.26
cl07 828.93 828.93 828.93 828.93 828.93
c108 828.93 828.93 828.93 848.93 828.93
c109 828.93 828.93 828.93 828.93 828.93

C1 Average 834.82 833.19 832.91 846.55 846.14
rc101 1694.74 1694.75 1693.47 1726.92 1690.05
rc102 1515.44 1507.35 1500.68 1520.47 1522.35
rc103 1384.37 1384.71 1362.87 1331.54 1364.30
rcl04 1221.98 1238.79 1216.71 1181.71 1220.52
rcl05 1604.82 1612.19 1558.09 1611.83 1598.35
rc106 1435.26 1428.87 1419.05 1461.27 1443.11
1c107 1303.18 1334.34 1280.41 1270.37 1376.36
rc108 1213.36 1213.16 1167.04 1233.66 1197.25

RC1 Average 1421.64 1426.77 1399.79 1417.22 1426.54
1201 1291.00 1281.64 1324.45 1298.40 1329.24
1202 1120.05 1140.40 1127.76 1133.52 1108.41
r203 969.90 976.44 967.56 1032.61 947.55
1204 830.48 817.28 810.44 803.14 839.18
1205 1126.92 1134.40 1073.52 1046.21 1098.40
1206 983.72 991.80 996.07 990.65 972.62
r207 905.39 904.94 894.59 884.83 896.74
1208 784.72 770.42 749.85 748.28 784.46
1209 1010.87 986.97 969.93 952.30 947.99
1210 991.23 979.51 966.67 981.90 1050.54
r211 863.43 866.17 857.06 899.51 832.97

R2 Average 988.88 986.36 976.17 979.21 982.55
¢201 591.55 591.55 591.55 591.55 591.55
c202 591.55 591.55 591.55 591.55 591.55
€203 628.81 617.61 617.61 591.17 591.17
c204 622.34 590.59 590.59 590.59 878.62
c205 588.87 588.87 588.87 588.87 588.87
c206 588.49 588.49 588.49 588.49 588.49
c207 588.28 588.28 588.28 588.28 588.28
c208 588.32 588.32 588.32 588.32 588.32

C2 Average 598.53 593.16 593.16 589.85 625.86
rc201 1449.02 1480.89 1409.22 1578.30 1504.80
1c202 1327.54 1305.57 1305.57 1383.43 1248.23
1c203 1107.86 1142.96 1102.81 1131.34 1182.34
rc204 880.26 917.30 876.59 913.57 913.57
rc205 1342.63 1316.62 1315.15 1433.18 1437.76
rc206 1194.53 1218.82 1172.22 1289.79 1187.08
rc207 1106.25 1134.32 1123.77 1193.56 1065.96
1c208 945.37 884.84 868.76 868.76 894.58

RC2 Average 1169.18 1175.17 1146.76 1223.99 1179.29
Overall Average 1054.58 1053.37 1037.77 1058.91 1059.83

42

As expected, the JFB and JGB algorithms are both statistically faster in solve time
with p-values of less than 0.0001. Table 9 contains the average CPU time to find the best
solution and the average total solution CPU time (in seconds on a Pentium IT 400 MHz

processor) for all algorithms. All algorithms are coded using Java 1.2.

Table 9 — Average Solve Times for All Algorithms

Average ‘
Time (secs) JFB JGB JTS RTS -best RTS -one
Best Found 19.50 19.58 20.32 19.54 12.33
Total 26.40 33.79 56.49 55.54 32.33

The JTS proved statistically superior to both RTS algorithms with p-values of
0.044 for RTS-best and 0.036 for RTS-one. This supports our hypothesis that multiple
starting points are an effective diversification and intensification strategy for tabu search.

We did not find any statistical difference in best found or total run times between
the JTS and the RTS-best algorithm. The RTS-one algorithm is statistically faster than

the JTS algorithm, as RTS-one does not generate multiple jump points.

4.6 Comparison to O’Rourke’s Reactive Tabu Search Algorithm

Admittedly, our RTS algorithm lacks any complex or sophisticated search
strategies. We compare our results to those produced by O’Rourke and Ryer’s RTS
algorithm which incorporates a reactive penalty scheme as well as a reactive tabu list
length (O’Rourke 1999, Ryer 1999). Their algorithm is written in Java and executed on a
Pentium II 400MHz processor just as our JTS algorithm.

Tables 10, 11, 12 contain the minimum distances found, the time the best solution

was found, and total solve time for both O’Rourke and Ryer’s RTS and our JTS

43

algorithms. The 25 and 50 customer problems are generated by using the first 25 and 50
customers of the 100 customer problems. Distances between customers are truncated to
the tenths digit before each problem is solved. From the tables, it is clear JTS achieves
the same quality of solutions with significant savings in computational effort.

The first column shows the problem number. Four columns a provided for each
algorithm denoting the minimum distance found, number of vehicles used, the CPU time
the best solution was found (in seconds), and the total CPU run time of the algorithm.
O’Rourke and Ryer only provide an approximate averége total time for each problem
size. The final three columns show the percent difference for the JTS algorithm from

O’Rourke and Ryer in terms of minimum distance, time best found, and total run time.

44

Table 10 — Comparison on Solomon 25 Customer Problems

25 Customer

Problems O'Rourke & Ryer Jump Tabu Search Percent Difference
Number Time Approx. Number Time Time

of Best Total of Best Total Best Total
Distance Vehicles Found Time Distance Vehicles Found Time Distance Found Time
r101 617.1 8.0 4 28 617.1 8.0 0.38 1.15 00% -90.5% -95.9%
r102 547.1 7.0 1 28 547.1 7.0 0.38 1.87 0.0% -62.0% -93.3%
r103 454.1 5.0 1 28 463.5 6.0 0.44 1.53 21% -56.0% -94.5%
r104 416.9 4.0 2 28 436.0 5.0 0.33 1.82 46% -83.5% -93.5%
r105 530.5 6.0 1 28 530.5 6.0 0.44 1.15 0.0% -56.0% -95.9%
r106 465.4 5.0 12 28 465.4 5.0 0.38 2.09 00% -96.8% -92.5%
r107 4243 4.0 24 28 4243 4.0 0.55 1.76 0.0% -97.7% -93.7%
r108 397.3 4.0 1 28 397.3 4.0 0.60 1.65 0.0% -400% -94.1%
r109 441.3 5.0 1 28 441.3 5.0 0.44 1.49 0.0% -56.0% -94.7%
r110 4441 5.0 1 28 4441 5.0 0.55 1.31 00% -45.0% -95.3%
ri11 428.8 4.0 3 28 438.3 4.0 0.44 1.82 22% -853% -93.5%
r112 393.0 4.0 1 28 402.0 4.0 0.55 1.75 23% -450% -93.8%
R1 Average 463.3 5.1 4.3 28.0 467.2 5.3 0.5 1.6 09% -67.8% -94.2%
c101 191.3 3.0 0 28 191.3 3.0 0.11 1.16 0.0% N/A -959%
cl102 190.3 3.0 1 28 190.3 3.0 0.55 1.97 0.0% -45.0% -93.0%
cl03 190.3 3.0 1 28 190.3 3.0 0.55 1.82 0.0% -450% -93.5%
cloa 186.9 3.0 8 28 190.0 3.0 0.61 1.65 1.7% -92.4% -94.1%
cl05 191.3 3.0 1 28 191.3 3.0 0.33 1.21 0.0% -67.0% -95.7%
c106 191.3 3.0 1 28 191.3 3.0 0.16 1.21 00% -84.0% -95.7%
cl07 191.3 3.0 0 28 191.3 3.0 0.38 1.26 0.0% N/A -955%
c108 191.3 3.0 4 28 191.3 3.0 0.55 1.37 0.0% -86.3% -95.1%
c109 191.3 3.0 2 28 191.3 3.0 0.33 1.60 00% -83.5% -94.3%
C1 Average 190.6 3.0 2.0 28.0 190.9 3.0 0.4 1.5 02% -7119% -94.7%
rc101 461.1 4.0 2 28 461.1 4.0 0.44 1.21 0.0% -780% -95.7%
rc102 351.7 3.0 1 28 351.8 3.0 0.22 1.32 0.0% -78.0% -95.3%
rc103 332.8 3.0 2 28 332.8 3.0 0.33 1.43 0.0% -83.5% -94.9%
rc104 306.6 3.0 1 28 308.7 3.0 0.49 1.37 0.7% -51.0% -95.1%
rc105 411.2 4.0 1 28 416.1 4.0 0.05 1.21 1.2% -95.0% -95.7%
rc106 345.5 3.0 1 28 345.5 3.0 0.39 1.32 0.0% -61.0% -953%
rc107 298.3 3.0 2 28 298.3 3.0 0.55 1.43 00% -7125% -949%
rc108 294.5 3.0 3 28 294.5 3.0 0.55 1.48 0.0% -81.7% -94.7%
RC1 Average 350.2 3.3 1.6 28.0 351.1 3.3 0.4 1.3 02% -75.1% -95.2%
Overall 347.5 3.9 2.9 28.0 349.5 4.0 0.4 1.5 05% -71.0% -94.7%

45

Table 11 - Comparison on Solomon 50 Customer Problems

50 Customer

Problems O'Rourke & Ryer Jump Search Percent Difference
Number Time Approx. Number Time Time

of Best Total of Best Total Best Total
Distance Vehicles Found Time Distance Vehicles Found Time Distance Found Time
r101 1043.8 12.0 9 100 1051.4 13.0 1.32 5.77 07% -853% -942%
r102 909.0 11.0 82 100 916.0 12.0 2.03 6.37 08% -97.5% -93.6%
r103 778.7 9.0 87 100 781.5 9.0 2.31 7.80 04% -973% -92.2%
r104 637.4 6.0 69 100 635.8 6.0 1.54 829 -03% -97.8% -91.7%
r105 901.6 9.0 16 100 916.9 10.0 1.54 6.81 1.7% -904% -93.2%
r106 793.0 8.0 99 100 798.5 8.0 2.31 6.54 07% -97.7% -93.5%
r107 711.1 7.0 79 100 723.1 7.0 0.66 6.76 1.7% -992% -93.2%
r108 617.7 6.0 78 100 630.2 6.0 219 1373 20% -97.2% -86.3%
r109 786.7 8.0 61 100 814.9 9.0 2.03 6.75 36% -96.7% -93.3%
r1i0 707.8 7.0 84 100 697.0 7.0 2.04 720 -15% -97.6% -92.8%
riil 716.6 7.0 76 100 722.0 7.0 248 1302 08% -96.7% -87.0%
rl12 635.0 6.0 68 100 652.3 7.0 2.75 7.53 279% -96.0% -92.5%
R1 Average 769.9 8.0 67.3 100.0 778.3 8.4 1.9 8.0 1.1% -95.8% -92.0%
cl101 362.4 5.0 3 100 362.4 5.0 1.75 5.65 0.0% -41.7% -94.4%
c102 361.4 5.0 9 100 361.4 5.0 2.15 572 0.0% -76.1% -94.3%
c103 361.4 5.0 87 100 361.4 5.0 2.14 6.59 00% -97.5% -93.4%
c104 382.8 5.0 79 100 364.9 5.0 2.85 620 -47% -96.4% -93.8%
c105 362.4 5.0 19 100 362.4 5.0 2.04 5.94 00% -893% -94.1%
cl106 362.4 5.0 4 100 362.4 5.0 192 5.65 00% -520% -94.4%
c107 362.4 5.0 6 100 362.4 5.0 176 5.82 0.0% -707% -94.2%
c108 362.4 5.0 4 100 362.4 5.0 1.93 6.05 0.0% -51.8% -94.0%
c109 362.4 5.0 26 100 362.4 5.0 1.59 5.82 0.0% -939% -94.2%
C1 Average 3644 5.0 26.3 100.0 362.5 5.0 2.0 5.9 05% -714.4% -94.1%
rc101 946.8 8.0 60 100 948.9 8.0 1.98 6.10 02% -96.7% -93.9%
rcl102 831.8 7.0 60 100 843.4 8.0 143 7.09 14% -97.6% -92.9%
rc103 710.9 6.0 94 100 779.6 7.0 2.14 5.77 9.7% -977% -94.2%
rcl04 546.5 5.0 18 100 548.2 5.0 2.14 5.16 03% -88.1% -94.8%
rcl05 855.3 8.0 4 100 859.8 8.0 0.87 10.32 05% -783% -89.7%
rcl06 723.2 6.0 58 100 765.6 6.0 0.94 6.21 59% -984% -93.8%
rc107 644.4 6.0 36 100 652.5 6.0 1.43 5.55 1.3% -96.0% -94.5%
rc108 598.1 6.0 58 100 603.9 6.0 2.58 9.06 1.0% -95.6% -90.9%
RC1 Average 732.1 6.5 48.5 100.0 = 750.2 6.8 1.7 6.9 25% -93.5% -93.1%
Overall 633.6 6.7 494 100.0 641.5 6.9 1.9 7.1 1.0% -885% -92.9%

46

Table 12 - Comparison on Solomon 100 Customer Problems

100 Customer
Problems O'Rourke & Ryer Jump Search Percent Difference
Number Time Approx. Number Time Time
of Best Total of Best Total Best Total

Distance Vehicles Found Time Distance Vehicles Found Time Distance Found Time

riol 1676.2 20.0 414 550 1672.8 20.0 841 3790 -02% -98.0% -93.1%
r102 1502.4 19.0 96 550 14939 19.0 961 4164 -06% -90.0% -92.4%
r103 1265.0 15.0 228 550 1245.6 15.0 829 '58.66 -1.5% -96.4% -89.3%
r104 1039.6 12.0 338 550 1038.7 12.0 1192 63.05 -0.1% -96.5% -88.5%
r105 1399.4 16.0 378 550 1397.5 15.0 8.13 4076 -01% -97.8% -92.6%
r106 1268.4 14.0 491 550 1286.3 13.0 933 3493 14% -98.1% -93.6%
r107 1129.0 13.0 406 550 1086.8 11.0 961 3856 -37% -97.6% -93.0%
r108 956.8 10.0 565 550 990.7 11.0 1202 4674 35% -979% -91.5%
r109 1181.0 14.0 311 550 1223.7 12.0 939 5778 3.6% -97.0% -89.5%
r110 1133.2 13.0 328 550 1139.0 12.0 1098 3839 05% -96.7% -93.0%
rlil 1077.3 12.0 491 550 1096.4 12.0 1093 48.17 1.8% -97.8% -91.2%
r112 971.6 11.0 460 550 978.4 11.0 1263 4663 0.7% -973% -91.5%
R1 Average 1216.7 14.1 375.5 550.0 1220.8 13.6 10.1 46.1 04% -96.7% -91.6%
c101 827.3 10.0 43 550 827.3 10.0 6.86 2856 0.0% -84.0% -94.8%
cl02 827.3 10.0 253 550 827.3 10.0 758 2570 00% -97.0% -953%
c103 828.9 10.0 535 550 827.4 10.0 973 2544 -02% -982% -95.4%
c104 950.0 10.0 509 550 863.6 10.0 11.31 2998 -9.1% -97.8% -94.5%
cl05 827.3 10.0 65 550 827.3 10.0 077 2702 00% -98.8% -95.1%
cl106 827.3 10.0 55 550 827.3 10.0 824 2609 00% -85.0% -95.3%
cl07 827.3 10.0 210 550 827.3 10.0 280 28.12 0.0% -98.7% -949%
c108 827.3 10.0 321 550 827.3 10.0 8.13 2422 00% -97.5% -95.6%
c109 853.3 10.0 463 550 827.3 10.0 621 2664 -3.0% -98.7% -95.2%

C1 Average 844.0 10.0 272.7 550.0 831.3 10.0 6.8 26.9 -14% -95.1% -95.1%
rcl101 1669.9 16.0 381 550 1688.2 16.0 6.86 39.21 1.1% -982% -92.9%
rc102 1498 .4 15.0 419 550 15109 15.0 840 3652 0.8% -98.0% -93.4%
rc103 1363.6 13.0 270 550 1320.7 12.0 10,60 3774 -3.1% -96.1% -93.1%
rc104 1179.2 11.0 308 550 1206.8 11.0 1076 3075 @ 23% -96.5% -94.4%
rc105 1557.4 15.0 473 550 1557.3 15.0 6.37 3603 0.0% -98.7% -93.4%
rcl06 1432.8 13.0 434 550 1415.2 13.0 7.58 5372 -12% -983% -902%
rc107 1266.1 12.0 417 550 1269.7 12.0 999 5437 03% -97.6% -90.1%
rc108 1175.1 12.0 475 550 1170.4 11.0 11.37 30.16 -04% -97.6% -94.5%
RC1 Average 13928 13.4 397.1 550.0 1392.4 13.1 9.0 39.8 0.0% -97.6% -92.8%
Overall 1149.6 12.6 349.6 550.0 1147.3 12.3 8.8 38.4 03% -96.5% -93.0%

47

4.7 Comparison to Best Known Solutions for Solomon’s MVRPTW Instances

More commonly, the Solomon instances are solved by minimizing vehicles first,
then total distance. Table 13 contains the solutions produced by the JTS algorithm based
on this criterion. The solutions are compared to the best known solutions for each of the
problems. Minimum vehicles is achieved by attempting to solve each problem with the
amount of vehicles used by the best known solution for that problem. If JTS is unable to
find a solution that visits all of the customers with the minimum number of vehicles, the
number of vehicles is increased by one until JTS can find a complete solution.

Columns 2 and 3 contain the minimum distance and number of vehicles for the
best known solution. Column 4 contains a reference for the source of the best known
solution. Columns 5 and 6 contain the minimum distance and number of vehicles found
by JTS. The last two columns show the percent difference in minimum distance and
number of vehicles for JTS over the best known solutions. The best known solutions to
the C1 problem set are proven optimal solutions and were solved with distance between
customers truncated to tenths digit before the problem is solved.

While it is difficult to compare CPU times across different programming
languages and processors, the algorithms producing the best known solutions used
significantly more CPU time than JTS. In some cases, the algorithms were executed
multiple times with different random seeds. For JTS, the average CPU time to find the
best solution is 31.3 seconds and the average total solve time is 48.8 seconds on a

Pentium II 400 MHz processor.

48

Table 13 — Comparison to Best Known Solutions for Solomon Instances

| Problem Best Known Source JTS Percentage from Best
i Distance NV Distance NV Distance NV
rl01 1607.70 18 Desrochers et al 1992 1679.42 19 4.5% 5.6%
rl02 1434.00 17 Desrochers et al 1992 1485.33 18 3.6% 5.9%
ri03 1207.00 13 Thangiah et al 1994 1295.77 14 7.4% 7.7%
rio4 1007.31 9 Shaw 1997 1100.88 10 9.3% 11.1%
r105 1377.10 14 Rochat and Taillard 1995 1449.30 14 5.2% 0.0%
rt06 1252.03 12 Rochat and Taillard 1995 1357.88 12 8.5% 0.0%
107 1104.66 10 Shaw 1997 1109.70 11 0.5% 10.0%
r108 963.99 9 Shaw 1997 994.10 10 3.1% 11.1%
r109 1205.96 11 Shaw 1997 1274.81 12 5.7% 9.1%
r110 1135.07 10 Shaw 1997 1171.37 11 3.2% 10.0%
rl11 1096.73 10 Shaw 1997 1144.94 11 4.4% 10.0%
ri12 953.63 10 Rochat and Taillard 1995 1022.16 10 7.2% 0.0%
R1 Average 1195.43 11.92 1257.14 12.67 5.16% 6.29%
c101 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0%
c102 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0%
c103 826.30 10 Kohl and Madsen 1997 829.27 10 0.4% 0.0%
cl04 82290 10 Kohl and Madsen 1997 864.37 10 5.0% 0.0%
c105 827.30 10 Koh! and Madsen 1997 828.93 10 0.2% 0.0%
c106 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0%
cl07 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0%
c108 827.30 10 Desrochers et al 1992 828.93 10 0.2% 0.0%
cl109 827.30 10 Kohl and Madsen 1997 828.93 10 0.2% 0.0%
C1 Average 826.70 10.00 832.91 10.00 0.75% 0.00%
rc101 1669.00 14 Thangiah er al 1994 1707.31 15 2.3% 7.1%
rcl102 1554.75 12 Taillard et al 1997 1576.64 14 1.4% 16.7%
rcl103 1110.00 11 Thangiah et al 1994 1356.07 12 22.2% 9.1%
rcl104 1135.48 10 Shaw 1997 1216.71 11 7.2% 10.0%
rcl105 1643.38 13 Taillard et al 1997 1569.86 15 -4.5% 15.4%
rc106 1448.26 11 Taillard ez al 1997 1454.40 12 0.4% 9.1%
rcl07 1230.48 11 Shaw 1997 1289.34 12 4.8% 9.1%
rc108 1139.82 10 Taillard e1 al 1997 1171.26 11 2.8% 10.0%
RC1 Average 1366.40 11.50 1417.70 12.75 3.75% 10.87%
r201 1254.09 4 Kilby ez al 1997 1351.94 4 7.8% 0.0%
1202 1214.28 3 Taillard et al 1997 1127.77 4 -7.1% 33.3%
r203 948.74 3 Rochat and Taiitard 1995 962.74 3 1.5% 0.0%
1204 867.33 2 Kilby ez al 1997 815.69 3 -6.0% 50.0%
r205 998.72 3 Kilby et al 1997 1098.23 3 10.0% 0.0%
r206 833.00 3 Thangiah er al 1994 996.07 3 19.6% 0.0%
r207 814.78 3 Rochat and Taillard 1995 894.59 3 9.8% 0.0%
r208 738.60 2 Rochat and Taillard 1995 792.82 2 7.3% 0.0%
209 855.00 3 Thangiah et al 1994 982.44 3 14.9% 0.0%
1210 963.37 3 Kilby et al 1997 1009.91 3 4.8% 0.0%
211 923.80 2 Taillard et al 1997 857.06 3 -71.2% 50.0%
R2 Average 946.52 2.82 989.93 3.09 4.59% 9.68%
€201 591.56 3 Potvin and Bengio 1996 591.55 3 0.0% 0.0%
€202 591.56 3 Potvin and Bengio 1996 591.55 3 0.0% 0.0%
€203 591.17 3 Rochat and Taillard 1995 617.61 3 4.5% 0.0%
c204 590.60 3 Potvin and Bengio 1996 590.59 3 0.0% 0.0%
c205 588.88 3 Potvin and Bengio 1996 588.87 3 0.0% 0.0%
€206 588.49 3 Potvin and Bengio 1996 588.49 3 0.0% 0.0%
c207 588.29 3 Rochat and Taillard 1995 588.28 3 0.0% 0.0%
c208 588.32 3 Rochat and Taillard 1995 588.32 3 0.0% 0.0%
C2 Average 589.86 3.00 593.16 3.00 0.56% 0.00%
rc201 1406.94 4 Kilby er al 1997 1513.79 4 7.6% 0.0%
rc202 1162.80 4 Kilby et al 1997 1310.36 4 12.7% 0.0%
rc203 1068.07 3 Kilby et al 1997 1139.71 3 6.7% 0.0%
rc204 803.90 3 Kilby et al 1997 876.59 3 9.0% 0.0%
rc205 1302.42 4 Kilby ez al 1997 1463.48 4 12.4% 0.0%
rc206 1156.26 3 Kilby ez al 1997 1288.20 3 11.4% 0.0%
rc207 1075.25 3 Kilby et al 1997 1175.33 3 9.3% 0.0%
rc208 833.97 3 Rochat and Taillard 1995 868.76 3 4.2% 0.0%
RC2 Average 1101.20 3.38 1204.53 3.38 9.38% 0.00%
Overall 1004.35 7.10 1049.23 7.49 4.03% 4.47%

49

4.8 Multiple Depot Problems

The Solomon problem instances do not model such factors as multiple depots, a
heterogeneous vehicle fleet, customer priorities, and time walls. These factors are
modeled in our algorithm; however, as demonstrated in the previous section, these factors
do not affect the quality of the solution when they are not present in the problem.

Cordeau et al (1997) develops 10 randomly generated MD VRPs to test their tabu
search heuristic. These problems vary in terms of number and location of customers,
number of depots, number of vehicles, maximum route length, and vehicle capacity. The
objective is to find the shortest tour visiting all of the customers. Table 14 compares the

distances found by the JTS algorithm to those reported by Cordeau et al (1997).

Table 14 — Comparison on Cordeau ef al MD VRPs

Number Number JTS

Problem of of Route Vehicle Number of Cordeauefal Best Percent

Number Vehicles Depots Length Capacity Customers Best Distance Distance Difference
pr01 1 4 500 200 48 861.32 909.89 5.64%
pr02 2 4 480 195 96 1307.61 1386.11 6.00%
pr03 3 4 460 190 144 1806.60 1910.31 5.74%
pro4 4 4 440 185 192 2072.52 2198.60 6.08%
pr05 5 4 420 180 240 2385.77 2570.21 7.73%
pr06 6 4 400 175 288 2723.27 3000.13 10.17%
pr07 1 6 500 200 72 1089.56 113224 3.92%
pr08 2 6 475 190 144 1666.60 1802.66 8.16%
pr09 3 6 450 180 216 2153.10 237079 10.11%
prl0 4 6 425 170 288 2921.85 3159.48 8.13%

Average 1898.82 2044.04 7.65%

As seen in Table 14, JTS does an admirable job on these MD VRPs coming
within 10% or better of the best known solution across all ten problem instances.
In addition, Cordeau et al (1997) compile benchmark problems from the literature

and achieve new best known solutions to all but two of them. Table 15 compares the

50

distances found by JTS to the best known solutions. Problems 1 through 7 are found in

Christofides and Eilon (1969). Problems 8 through 11 are found in Gillett and Johnson

(1976). Problems 12 through 23 are found in Chao et al (1993).

Table 15 — Comparison on MD VRPs from Literature

Number Number JTS

Problem of of Route Vehicle Number of Best Known Best Percent

Number Vehicles Depots Length Capacity Customers Distance Distance Difference
p01 4 4 infinite 80 50 576.87 601.70 4.30%
p02 2 4 infinite 160 50 473.53 495.00 4.53%
p03 3 5 infinite 140 75 641.19 685.99 6.99%
p04 8 2 infinite 100 100 1001.59 1074.83 7.31%
p05 5 2 infinite 200 100 750.03 811.52 8.20%
p06 6 3 infinite 100 100 876.50 927.01 5.76%
p07 4 4 infinite 100 100 885.80 994.40 12.26%
p08 14 2 310 500 249 4437.68 472349 6.44%
p09 12 3 310 500 249 3900.22 4287.41 9.93%
pl0 8 4 310 500 249 3663.02 424242 15.82%
pll 6 5 310 500 249 3554.18 412999 16.20%
pl2 5 2 infinite 60 80 1318.95 1453.82 10.23%
pl13 5 2 200 60 80 1318.95 1357.48 2.92%
pla 5 2 180 60 80 1360.12 1365.68 0.41%
p15 5 4 infinite 60 160 2505.42 2741.75 9.43%
pl6 5 4 200 60 160 2572.23 2658.05 3.34%
pl7 5 4 180 60 160 2709.09 2731.36 0.82%
p18 5 6 infinite 60 240 3702.85 4371.05 18.05%
p19 5 6 200 60 240 3827.06 3951.66 3.26%
p20 5 6 180 60 240 4058.07 4097.04 0.96%
p21 5 9 infinite 60 360 5474.84 6486.66 18.48%
p22 5 9 200 60 360 5702.16 6014.87 5.48%
p23 5 9 180 60 360 6095.46 6145.56 0.82%

Average 2669.82 2884.73 8.05%

JTS achieves solutions within 10% of the best known in a short amount of time.

For JTS, the average CPU time to find the best solution is 74.4 seconds and the average

total solve time is 170.3 seconds on a Pentium II 400 MHz processor.

For problems 12 through 23, there is a clear pattern for the performance of JTS.

As the vehicle capacity gets smaller, the quality of the JTS solution improves. Since JTS

maintains feasibility throughout the algorithm, we hypothesize that the performance of

JTS is improved on problems with a smaller feasible solution space, i.e. tightly

constrained problems.

4.9 Conclusions

Our JTS algorithm provides quick, feasible, high-quality solutions. The algorithm

handles many additional factors, such as, multiple depots, multiple heterogeneous

' vehicles, time windows, time walls, and priorities. These factors combined with the
multiple parameter sets for solution generation make JTS a robust algorithm capable of
solving many variations of the vehicle routing problem.

JTS does not seriously challenge the best known solutions for the Solomon or
MDVRP benchmark problems. However, the results achieved by JTS are within 10% of
the best known solutions and the solution time is significantly shorter. We recognize that
we have not modeled the UAV problem with 100% accuracy. However, in practical
UAV applications, solution speed is the most important attribute of the solution
algorithm. Therefore, it is not cost-effective to spend excess time searching for a 99%
solution to the model when it is quite likely that the 90% solution will suffice.

A 99% solution is probably not achievable by the JTS algorithm. Even when all
jump points are explored, the solutions are only improved by approximately 2%. The
algorithm finds the good quality 90% solutions quickly, but likely converges too quickly
to achieve the remaining 10%. Additional diversification strategies are likely needed to

achieve the additional solution quality improvement.

52

Chapter 5. Recommendations for Further Research

5.1 Modeling UAYV Realism

Weather conditions have a significant impact upon UAV missions. This is the
main area in which the algorithm needs to be improved. The JTS algorithm incorporates
penalty factors for each segment. Weather data can be brought into the algorithm,
processed and represented using these penalties. The algorithm would then consider
weather factors in building solutions.

Terrain can also impact UAV missions. Terrain features can be incorporated into
the algorithm in the same manner as weather. The speed of the algorithm must be kept in

mind when adding these factors.

5.2 Tour Construction

The best direction for improving the tour construction portion of the algorithm
would be to produce a more diverse set of jump points. Even when all of the jump points
are explored, the algorithm does not challenge the best known solutions for the Solomon
or MDVRP benchmark problems.

This improvement is likely to come from new construction heuristics or new
parameter values. Of the two, new construction heuristics seem more promising. The
genetic sectoring algorithm developed by Thangiah et al (1994) in combination with the

Solomon heuristic could prove very effective.

53

5.3 Search Techniques

Another direction in which the algorithm may be improved is with more advanced
local search techniques. There are many advanced tabu and local search techniques
proposed by Shaw (1997) and Taillard et al (1997) that may improve the solution quality.

When making these improvements, the needs of the eventual user of the algorithm
must be considered. Do they require a 90% solution in a very short amount of time or

can they wait longer for a potentially better solution?

5.4 Extensions to VRP

Our algorithm models many VRP factors such as heterogeneous vehicles.
However, we do not ‘take advantage’ of heterogeneous vehicles mainly because it is
unclear how to best utilize a heterogeneous vehicle fleet. Is it more efficient to use larger
vehicles before smaller ones, faster ones before slower ones? Much research remains in

this area.

54

Bibliography

Battiti, Roberto. “Reactive Search: Toward Self-Tuning Heuristics” in Modern Heuristic
Search Methods. Ed. V.J.Rayward-Smith, and others. Wiley & Sons, Inc.,
(1996).

Brandao, Jose and Alan Mercer. “A Tabu Search Algorithm for the Multi-Trip Vehicle
Routing and Scheduling Problem,” European Journal of Operational Research,
100: 180-191 (1997).

Carlton, William B. A Tabu search to the General Vehicle Routing Problem. Ph.D.
dissertation. University of Texas, Austin TX, (1995).

Chao, LM., B.L. Golden, and E.A. Wasil. “A New Heuristic for the Multi-Depot Vehicle
Routing Problem that Improves Upon Best Known Solutions,” American Journal
of Mathematical and Management Sciences, 13:371-406 (1993).

Christofides, N. and S. Eilon. “An Algorithm for the Vehicle-Dispatching Problem,”
Operations Research Quarterly, 20:309-318 (1969).

Clarke, G. and J.W. Wright. “Scheduling Vehicles from a Central Depot to a Number of
Delivery Points,” Operations Research, 12: 568-581 (1964).

Cordeau, J.F., M. Gendreau, and G. Laporte. “A Tabu Search Heuristic for Periodic and
Multi-Depot Vehicle Routing Problems,” Networks, 30(2): 105 (1997).

Desrochers M., J. Desrosiers, and M.M. Solomon. “A New Optimization Algorithm for
the Vehicle Routing Problem with Time Windows,” Operations Research, 40:
342-354 (1992).

Gendreau, Michel, Alian Hertz and Gilbert Laporte. “A Tabu Search Heuristic for the
Vehicle Routing Problem,” Management Science, 40(10): 1276-1290 (1994).

Gendreau, Michel, Gilbert Laporte and Frederic Semet. “A Tabu Search Heuristic for the
Undirected Selective Travelling Salesman Problem,” European Journal of
Operational Research, 106: 539-545 (1998).

Gillett, B.E. and J.G. Johnson. “Multi-Terminal Vehicle-Dispatch Algorithm,” Omega
4:711-718 (1976).

Gillett, B.E. and L. Miller. “A Heuristic Algorithm for the Vehicle Dispatching
Problem,” Operations Research, 22: 340-349 (1974).

Glover, Fred “Tabu Search — Part 1,” ORSA Journal on Computing, 1: 190-206 (1989).
55

Glover, Fred “Tabu Search — Part II,” ORSA Journal on Computing, 2: 4-32 (1990a).
Glover, Fred. “Tabu Search: A Tutorial,” Interfaces, 20: 74-94 (July-August 1990b).

Glover, Fred and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers,
(1997).

Harder, Robert. A Java Universal Vehicle Router in Support of Routing Unmanned
Aerial Vehicles. MS thesis, AFIT/GOA/ENS/00M. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH, (February 2000).

Hooker, J.N. “Testing Heuristics: We Have It All Wrong,” Journal of Heuristics, 1:
33-42 (1995).

Kilby P., P. Prosser, and P. Shaw. “Guided Local Search for the Vehicle Routing
Problem,” In Proceedings of the 2" International Conference on Meta-heuristics,
(1997).

Kohl, N. and O. B. G. Madsen. “An Optimization Algorithm for the Vehicle Routing
Problem with Time Windows Based on Lagrangian Relaxation,” Operations
Research, 45(3): 395 (1997).

Laporte, Gilbert. “The Traveling Salesman Problem: An overview of exact and

approximate algorithms,” European Journal of Operational Research, 59: 231-
247 (1992a).

Laporte, Gilbert. “The Vehicle Routing Problem: An overview of exact and approximate
algorithms,” European Journal of Operational Research, 59: 345-358 (1992b).

Lawler, E.L.,].K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The Traveling
Salesman Problem. A Guided Tour of Combinatorial Optimization. John Wiley
& Sons Ltd, (1985).

O’Rourke, Kevin P. Dynamic Unmanned Aerial Vehicle (UAV) Routing With a Java-
Encoded Reactive Tabu Search Metaheuristic. MS thesis, AFIT/GOA/ENS/99M.
School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, (February 1999).

Parker, Gary R. and Ronald L. Rardin. “An Overview of Complexity Theory in Discrete
Optimizations: Part I. Concepts,” IIE Transactions, March: 3-10 (1982a).

Parker, Gary R. and Ronald L. Rardin. “An Overview of Complexity Theory in Discrete
Optimizations: Part II. Results and Implications,” IIE Transactions, June: 3-10
(1982b).

56

Potvin, J.-Y. and S. Bengio. “The Vehicle Routing Problem with Time Windows—Part
II: Genetic Search,” ORSA Journal on Computing, 8(2): 165 (1996).

Rochat, Y. and F. Semet. “A Tabu Search Approach for Delivering Pet Food and Flour
in Switzerland,” Journal of Operations Research Society, 45: 1223-1246 (1994).

Rochat, Y. and E. Taillard. “Probabilistic Diversification and Intensification in Local
Search for Vehicle Routing,” Journal of Heuristics, 1(1): 147-167 (1995).

Rosenkrantz, D.J., R.E. Stearns, and P.M. Lewis II. “An Analysis of Several Heuristics
for the Traveling Salesperson Problem,” SIAM Journal on Computing, 6: 563-581
(1977).

Ryan, Joel L., T.G. Bailey, J.T. Moore, and W.B. Carlton. “Unmanned Aerial Vehicles
(UAV) Route Selection Using Reactive Tabu Search,” Military Operations
Research, 4(3): 5-24 (1999).

Ryer, David M. Implementation of the Metaheuristic Tabu Search in Route Selection for
Mobility Analysis Support System. MS thesis, AFIT/GOA/ENS/99M-07. School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, (March 1999).

Semet, Frederic and Eric Taillard. “Solving Real-Life Vehicle Routing Problems
Efficiently Using Tabu Search,” Annals of Operations Research, 41: 469-488
(1993).

Shaw, P. A New Local Search Algorithm Providing High Quality Solutions to Vehicle
Routing Problems. APES Group, Dept of Computer Science, University of
Strathclyde, Glasgow, Scotland, UK. (June 1997).

Sisson, Mark R. Applying Tabu Heuristic to Wind Influenced, Minimum Risk, and
Maximum Expected Coverage Routes. MS thesis, AFIT/GOR/ENS/97M. School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, (February 1997).

Solomon, Marius M. “Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints,” Operations Research, 35(2): 254-265 (1987).

Taillard, E., P. Badeau, M. Gendreau, F. Guertain, and J.-Y. Potvin. “A Tabu Search

Heuristic for the Vehicle Routing Problem with Soft Time Windows,”
Transportation Science, 32(2) (1997).

Thangiah, S.R., LH. Osman, and T. Sun. Hybrid Genetic Algorithm, Simulated
Annealing and Tabu Search Methods for Vehicle Routing Problems with Time

57

Windows. Technical Report UKC/OR94/4, Institute of Mathematics and
Statistics, University of Kent, Canterbury, UK. (1994).

Tsubakitani, Shigeru. and James R. Evans. “An empirical study of a new metaheuristic
for the traveling salesman problem,” European Journal of Operational Research,
104: 113-128 (1998).

“USAF Unmanned Aerial Vehicle Battlelab homepage.” Excerpt from unpublished

article, n. pag. http://www.wg53.eglin.af.mil/battlelab/default.htm. (25 March
1999).

58

